
Learning Robust Policy against Disturbance in Transition Dynamics
via State-Conservative Policy Optimization

Yufei Kuang1, Miao Lu1, Jie Wang1,2∗, Qi Zhou1, Bin Li1, Houqiang Li1,2

1CAS Key Laboratory of Technology in GIPAS, University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{yfkuang, lumiao, zhouqida}@mail.ustc.edu.cn
{jiewangx, binli, lihq}@ustc.edu.cn

Abstract
Deep reinforcement learning algorithms can perform poorly
in real-world tasks due to the discrepancy between source and
target environments. This discrepancy is commonly viewed
as the disturbance in transition dynamics. Many existing al-
gorithms learn robust policies by modeling the disturbance
and applying it to source environments during training, which
usually requires prior knowledge about the disturbance and
control of simulators. However, these algorithms can fail in
scenarios where the disturbance from target environments is
unknown or is intractable to model in simulators. To tackle
this problem, we propose a novel model-free actor-critic
algorithm—namely, State-Conservative Policy Optimization
(SCPO)—to learn robust policies without modeling the dis-
turbance in advance. Specifically, SCPO reduces the distur-
bance in transition dynamics to that in state space and then
approximates it by a simple gradient-based regularizer. The
appealing features of SCPO include that it is simple to im-
plement and does not require additional knowledge about the
disturbance or specially designed simulators. Experiments in
several robot control tasks demonstrate that SCPO learns ro-
bust policies against the disturbance in transition dynamics.

1 Introduction
Deep reinforcement learning (DRL) has achieved remark-
able success in many complex control tasks (Mnih et al.
2015; Lillicrap et al. 2016; Tobin et al. 2017; OpenAI et al.
2019). However, existing DRL algorithms tend to perform
poorly in real-world tasks due to the environment discrep-
ancy (Rajeswaran et al. 2017; Jiang et al. 2021). For exam-
ple, policies trained to control robots in source environments
can fail to generalize in target environments with slightly
changed physical parameters (e.g., mass and friction). This
discrepancy usually comes from test-generalization and
simulation-transfer in real-world tasks, and it is commonly
viewed as the disturbance in transition dynamics (Pinto et al.
2017; Tessler, Efroni, and Mannor 2019). Therefore, re-
search on learning robust policies against the disturbance in
transition dynamics is receiving increasing attention.

In order to learn robust policies, many previous algo-
rithms model the disturbance and apply it to source environ-
ments during training. One simple and effective algorithm is

∗Corresponding author.
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

domain randomization (DR) (Tobin et al. 2017), which ran-
domizes the parameters in source environments to generate
an ensemble of similar transition dynamics. DR uses these
dynamics to approximate the potential disturbance in target
environments. Another line of research is based on robust
Markov decision process (RMDP) theory (Iyengar 2005),
which considers the worst-case disturbance in transition dy-
namics at each step during training. For example, robust ad-
versarial reinforcement learning (RARL) algorithm (Pinto
et al. 2017) models the disturbance as trainable forces in
source environments based on the insight that environment
discrepancy can be viewed as extra forces, and then RARL
learns the worst-case disturbance by adversarial training.

Learning robust policies by modeling the disturbance
in advance, though effective, has two limitations in prac-
tice. First, these algorithms usually require task-specific
prior knowledge to model the disturbance (Mankowitz et al.
2020). For example, to randomize the environmental param-
eters during training, DR requires a pre-given uncertainty
set that contains specific parameters and their corresponding
variation ranges; to approximate the disturbance in target
environments, RARL employs extra forces that are manu-
ally designed for each task. However, when we train policies
for new tasks or test in unseen environments, we may lack
enough knowledge about the disturbance (Tessler, Efroni,
and Mannor 2019). Second, these algorithms usually assume
control of specially designed simulators (Packer et al. 2018),
as disturbing the agents during training in the real world can
be dangerous. However, sometimes building new simulators
can be expensive, and sometimes the disturbance is even in-
tractable to model in simulators (e.g., disturbance caused by
wear-and-tear errors and aerodynamic effects in robot con-
trol tasks) (Abdullah et al. 2019). In general, learning ro-
bust policies by modeling the disturbance and applying it to
source environments can be impractical in many scenarios.

In this paper, we propose a novel algorithm to learn ro-
bust policies without modeling the disturbance in advance.
First, we reduce the disturbance in transition dynamics to
that in state space based on the intuition that any disturbance
in transition dynamics eventually influences the process via
the change of future states. Then, we propose the State-
Conservative Markov Decision Process (SC-MDP), which
considers the worst-case disturbance in state space at each
step. Compared with the RMDP, SC-MDP reduces the origi-

PRELIMINARY PREPRINT VERSION: DO NOT CITE
The AAAI Digital Library will contain the published

version some time after the conference.

nal constrained optimization problem in transition dynamics
to a simpler one in state space, whose solving process does
not require taking infimum over a subset of the infinite di-
mensional transition probability space. Finally, we propose a
model-free actor-critic algorithm, called State-Conservative
Policy Optimization (SCPO), which approximates the dis-
turbance in state space by a simple gradient-based regular-
izer and learns robust policies by maximizing the objective
of SC-MDP. The appealing features of SCPO include that
it is simple to implement and does not require task-specific
prior knowledge and specially designed simulators to model
the disturbance. Experiments in MuJoCo benchmarks show
that SCPO consistently learns robust policies against differ-
ent types of disturbance in transition dynamics.

2 Related Work
In this section, we discuss related work that aims to learn
robust policies from different perspectives. Note that we
mainly focus on learning robust policies against the distur-
bance in transition dynamics in this paper.

Robustness against the Disturbance in Transition Dy-
namics The disturbance in transition dynamics mainly
comes from test-generalization and simulation-transfer
(Pinto et al. 2017; Rajeswaran et al. 2017). Many previ-
ous model-free algorithms learn robust policies by modeling
the disturbance and applying it to source environments dur-
ing training. Tobin et al. (2017) propose domain randomiza-
tion (DR) to generate environments with different transition
dynamics. Iyengar (2005) propose robust Markov decision
process (RMDP), which maximizes cumulative rewards un-
der the worst-case disturbance. Based on RMDP, Mankowitz
et al. (2020) propose robust MPO (R-MPO) to learn ro-
bust policies with pre-given uncertainty sets of environmen-
tal parameters; Jiang et al. (2021) propose monotonic robust
policy optimization (MRPO) with a theoretical performance
lower bound; Abdullah et al. (2019) propose the Wasserstein
robust reinforcement learning (WR2L) to train the environ-
ment parameters with protagonists jointly. Compared with
these algorithms, SCPO does not require specific priors and
control of simulators to model the disturbance in advance.

Robustness against the Disturbance in State Obser-
vations The disturbance in state observations can originate
from sensor errors and equipment inaccuracy (Zhang et al.
2020). Mandlekar et al. (2017) learn robust policies by ad-
versarial training with FGSM based attacks, and Zhang et al.
(2020) derive a robust policy regularizer that relates to to-
tal variation distance or KL-divergence on perturbed poli-
cies. Note that the disturbance in state observations does not
affect the ground-truth states and the underlying transition
dynamics. Thus, there are gaps betweem the algorithms de-
signed for these two different tasks (Zhang et al. 2020).

Robustness against the Disturbance in Action Space
The disturbance in action space can come from controller
inaccuracy and environment noise. OpenAI et al. (2019)
propose the random network adversary (RNA) algorithm,
which injects noise in action space during training using
a neural network with randomly sampled weights; Tessler,
Efroni, and Mannor (2019) propose probabilistic action ro-
bust MDP (PR-MDP) and noisy action robust MDP (NR-

MDP) to model two types of disturbance in action space and
then solve them by adversarial training. Sometimes we also
use the disturbance in action space to approximate the un-
modeled disturbance in transition dynamics, even though the
disturbance in transition dynamics is not necessarily orig-
inated from the disturbance in action space. We compare
SCPO with the action robust algorithm in our experiments.

3 Preliminaries
In this section, we briefly introduce the preliminaries.

Markov Decision Process (MDP) An MDP is defined
by a tuple (S,A, p, r, γ). Here S ⊂ Rm is the state space,
A ⊂ Rn is the action space, and p : S × A → ∆S is
the transition dynamic, where ∆S is the set of Borel prob-
ability measures on S. The reward function r : S × A →
[Rmin, Rmax] is bounded, and γ ∈ (0, 1) is the discount fac-
tor. Let π : S → ∆A be a stationary policy, where ∆A is the
set of Borel probability measures onA. For convenience, we
overload the notation to let π(·|s) and p(·|s, a) also denote
the probability density function (PDF) without ambiguity.

Robust Markov decision process (RMDP) The RMDP
considers the disturbance in transition dynamics at each step.
It is defined as a tuple (S,A,P, r, γ), where S, A, r, γ are
defined as above and P is an uncertainty set of possible tran-
sitions. Specifically, for each (s, a) ∈ S×A, P(s, a) is a set
of transitions p(s′|s, a) : S × A 7→ ∆S . When the agent is
at state s and takes action a, the next state s′ is determined
by one of the transitions in P(s, a). By definition, the uncer-
tainty set P described all possible disturbance in transition
dynamics. RMDP aims to learn a policy that maximizes the
expected return under the worst-case disturbance (Nilim and
Ghaoui 2004). The objective of RMDP is defined as

JP(π) , inf
p∈P

Ep,π[

+∞∑
t=0

γtr(st, at)]. (1)

That is, taking minimum over all possible probability mea-
sures induced by π and P on the trajectory space (Iyengar
2005). Based on the objective, the robust value functions are
defined as V πP (s) , infp∈P Ep,π[

∑+∞
t=0 γ

tr(st, at)|s0 =

s] and QπP(s, a) , infp∈P Ep,π[
∑+∞
t=0 γ

tr(st, at)|s0 =
s, a0 = a]. Note that QπP is the fixed point of the following
robust Bellman operator (which is a contraction on R|S×A|)
T πPQ , r(s, a)

+ γ inf
p(·|s,a)∈P(s,a)

Es′∼p(·|s,a),a′∼π(·|s′)[Q(s′, a′)]. (2)

Correspondingly, the optimal policy and the optimal action-
value function is defined to be Qπ

?

P , supπ Q
π
P .

Wasserstein Uncertainty Set A bounded uncertainty set
makes the problem well-defined, as optimizing over arbi-
trary dynamics only results in non-performing system. The
uncertainty setP(s, a) has recently been described using the
Wasserstein distance by many researchers (Abdullah et al.
2019; Hou et al. 2020). Let p0(s′|s, a) denote the transition
probability in the source environment, which is assumed to
be fixed. Then, the Wasserstein uncertainty set is defined as

Pε ,
{
p : W(p)

(
p(·|s, a), p0(·|s, a)

)
< ε, ∀(s, a)

}
, (3)

where W(p) is the pth-order Wasserstein metric on ∆S given
by Wp(µ, ν) , (infγ∈Γ(µ,ν)

∫
S×S d(x, y)p dγ)1/p, d is a

distance metric on S , and Γ(µ, ν) refers to all the cou-
plings of µ and ν. By recent progresses in optimal transport
(Blanchet and Murthy 2019), the robust Bellman operator
(2), when described by Wasserstein uncertainty set (3), can
be rewrite without explicitly taking infimum over a set of
probability measures. We show the result in the following
proposition, which serves as a motivation to our method.

Proposition 1. When the uncertainty set is described by
Wasserstein distance of order p as in Equation (3), the ro-
bust Bellman operator (2) is equivalent to

T πPεQ(s, a) = r(s, a) + γ sup
λ≥0

Es̃∼p0(·|s,a){
inf
s′∈S

Ea′∼π(·|s′)[Q(s′, a′)] + λ
(
d(s′, s̃)p − ε

)}
.

(4)

4 From RMDP to State-Conservative MDP
In this section, we propose a new state-conservative objec-
tive and the corresponding state-conservative Markov deci-
sion process (SC-MDP). SC-MDP reduces the disturbance
in transition dynamics to that in state space, allowing us to
learn robust policies without full prior knowledge about the
disturbance. Before we formally propose the new objective,
we first explain the motivation from state disturbance.

4.1 A View from State Disturbance
Consider the robust Bellman operator (2) and its Wasserstein
variant (4). We can write the empirical version of (4) as

T̂ πPεQ(st, at) = r(st, at) + γ sup
λ≥0

(5){
inf
s′∈S

Ea′∼π(·|s′) [Q(s′, a′)] + λ
(
d (s′, st+1)

p − ε
)}

,

where st+1 ∼ p0(·|st, at). Now assume that both the value
function V (s′) , Ea′∼π(·|s′)[Q(s′, a′)] and the pth-order
distance metric d(s′, st+1)p are convex functions of the vari-
able s′ in Equation (4). By the duality theory (Boyd and Van-
denberghe 2004), Equation (5) is equivalent to the following
form (detailed proof in Appendix A.1):

T̂ πPεQ(st, at) = r(st, at)+

γ inf
s′∈Bε(st+1)

Ea′∼π(·|s′)[Q(s′, a′)].
(6)

Such a form involves taking infimum of the future state-
value V π(s′) over all s′ in the ε-ball Bε(st+1) , {s′ ∈
S : d(s′, st+1)p ≤ ε}. Note that the convexity of V (s′) can
hold under linear and deterministic assumptions on rewards,
transitions and policies when the MDP is of finite horizon.

In general, the state-value function V π(s′) is not neces-
sarily convex. However, this observation gives us a differ-
ent view on promoting robustness against the disturbance
in transition dynamics. Intuitively, any disturbance in tran-
sition p finally influences the process via the change of fu-
ture states. Thus, instead of considering the worst-case per-
turbed transition as in the robust Bellman operator (2), we

can directly consider the worst-case perturbed next states as
in Equation (6). In other words, we can learn robust poli-
cies by considering the worst state-value over all possible
states close to st+1 ∼ p0(·|st, at). We refer to this method
as state disturbance, which is more compatible in practice
since it only involves finding a constraint minimum in the
finite-dimensional state space and thus does not require pri-
ors to model the disturbance in advance. Starting from this
view, we propose a new objective in Section 4.2 and further
extend it to a continuous control RL algorithm in Section 5.

4.2 State-Conservative Markov Decision Process
Now we formally propose the state-conservative objective
based on the state disturbance method in Section 4.1. Differ-
ent from the objective of RMDP in (1), we define it as

Jε-S(π) , Es0∼d0 [inf
s′0∈Bε(s)

Ea′0∼π(·|s′0)[r(s
′
0, a
′
0)

+γEs1∼p0(·|s′0,a′0)[inf
s′1∈Bε(s1)

Ea′1∼π(·|s′1)[r(s
′
1, a
′
1)

+γEs2∼p0(·|s′1,a′1)[inf
s′2∈Bε(s2)

Ea′2∼π(·|s′2)[r(s
′
2, a
′
2)

+ · · ·] · · ·]

(7)

where d0 and p0 represent the initial distribution and the
transition dynamic in source environments, ε is a non-
negative real controlling the degree of state disturbance, and
Bε(s) , {s′ ∈ S : d(s′, s) ≤ ε} is the ε-ball in S ⊆ Rm
induced by a distance metric d : S × S 7→ R. Note that
by setting ε to 0, our objective recovers the original re-
inforcement learning objective. We call the Markov deci-
sion process aiming to maximize the objective (7) as state-
conservative Markov decision process (SC-MDP).

Understand SC-MDP We illustrate the intuition of SC-
MDP in Figure 1. Consider an MDP with one-dimensional
state space. Suppose its rewards only depend on s. Then,
the original objective (i.e., the cumulative rewards) in Fig-
ure 1(a) encourages the stationary state distribution ρ(s) to
concentrate on states with higher rewards, while the state-
conservative objective in Figure 1(b) encourages ρ(s) to
concentrate on states that are more stable under disturbance.

Relation to RMDP Our newly proposed SC-MDP coin-
cides with RMDP in specific settings. If we only consider
deterministic transitions and let the uncertainty set of RMDP
bounded by Wasserstein distance, then one can easily check
that our state-conservative objective (7) equals to the objec-
tive (1) of RMDP. Though this equivalence does not neces-
sarily hold in general (discussions in Appendix B.1), the new
objective helps us design algorithms to learn robust policies.

4.3 State-Conservative Policy Iteration
Given a fixed policy π, we aim to evaluate its value itera-
tively. Based on the newly proposed objective (7), we define
the corresponding action-value function by

Qπε-S(s, a) , r(s, a) + γEs1∼p0(·|s,a)[

inf
s′1∈Bε(s1)

Ea′1∼π(·|s′1)[r(s
′
1, a
′
1) + γEs2∼p0(·|s′1,a′1)[

inf
s′2∈Bε(s2)

Ea′2∼π(·|s′2)[r(s
′
2, a
′
2) + · · ·] · · ·].

(8)

unstable states with
higher rewards

stable states with
lower rewards

rewards
stationary state distributions

𝜌𝜌past (𝑠𝑠) 𝜌𝜌past (𝑠𝑠) 𝜌𝜌current (𝑠𝑠) 𝜌𝜌current (𝑠𝑠)

(a) An example MDP.

unstable states with
higher rewards

stable states with
lower rewards

rewards
stationary state distributions

𝜌𝜌past (𝑠𝑠) 𝜌𝜌past (𝑠𝑠) 𝜌𝜌current (𝑠𝑠) 𝜌𝜌current (𝑠𝑠)

(b) Illustrate the SC-MDP.

Figure 1: An illustration of the state-conservative MDP.

We call Qπε-S the state-conservative action-value function of
policy π. It satisfies the following Bellman equation

Qπε-S(s, a) = r(s, a)+

γEs̃∼p0(·|s,a)

[
inf

s′∈Bε(s̃)
Ea′∼π(·|s′)[Q

π
ε-S(s′, a′)]

]
.

(9)

Thus, Qπε-S is the fixed point of the following operator

TπεQ(s, a) = r(s, a)+

γEs̃∼p0(·|s,a)

[
inf

s′∈Bε(s̃)
Ea′∼π(·|s′)[Q(s′, a′)]

]
.

(10)

We refer to Tπε as the state-conservative Bellman operator.
Now we show that Tπε is a contraction mapping.

Proposition 2 (Contraction Mapping). For any ε ≥ 0 and
any fixed policy π, the state-conservative Bellman operator
Tπε in (10) is a contraction mapping on (R|S×A|, ‖ · ‖∞).
Thus, Tπε has a unique fixed point, which is just the Qπε-S .

The proof of Proposition 2 is in Appendix A.2. Based on
it, we can derive a policy evaluation procedure, which starts
from arbitrary Q0 ∈ R|S×A| and obtain Qπε-S by iteratively
calculating Qk+1 = TπεQk. We call this procedure state-
conservative policy evaluation (SC-PE). After evaluating the
old policy, we introduce the policy improvement step, which
greedily chooses policies state-wisely to maximize the state-
conservative objective starting from given states.

Proposition 3 (Policy Improvement). Suppose Qπold
ε-S is the

action-value function of πold and πnew is chosen greedily by:

πnew(·|s) , arg max
π∈∆A

inf
s′∈Bε(s)

Ea′∼π[Qπold
ε-S (s′, a′)] (11)

Then Qπnew(s, a) ≥ Qπold(s, a) for all (s, a) ∈ S ×A.

The proof of Proposition 3 is in Appendix A.3. Now we
can derive a policy iteration algorithm that alternates be-
tween the state-conservative policy evaluation and improve-
ment steps introduced above. We call it state-conservative
policy iteration (SC-PI) and show it in Algorithm 1 in Ap-
pendix B.2. By setting ε to 0, SC-PI recovers the original
policy iteration algorithm (Sutton and Barto 2018).

5 State-Conservative Policy Optimization
In this section, we extend the SC-PI algorithm to a model-
free actor-critic algorithm, called state-conservative policy
optimization (SCPO), in continuous action space. First, we

introduce the main components of SCPO. Then, we pro-
pose a simple and efficient gradient-based implementation
of SCPO. Finally, we apply SCPO to the soft actor-critic
(SAC) algorithm (Haarnoja et al. 2018) and present the state-
conservative soft actor-critic (SC-SAC) as an instance.

5.1 State-Conservative Policy Optimization
Let Qθ denote the Q-function parameterized by θ, πφ de-
note the policy parameterized by φ, and D denote the col-
lected data. Then, the state-conservative policy optimization
(SCPO) algorithm mainly includes a state-conservative pol-
icy evaluation step to train the critic and a state-conservative
policy improvement step to train the actor. We conclude the
pseudo code of SCPO in Algorithm 2 in Appendix B.3.

State-Conservative Policy Evaluation In this step, we
train the critic Qθ by minimizing the Bellman residual

Jε-Q(θ) , E(st,at)∼D

[1

2

(
Qθ(st, at)− Q̂(st, at)

)2]
, (12)

where the learning target Q̂ is defined as

Q̂(st, at) , r(st, at) + γEst+1∼p0
[
V̂ (st+1)

]
, (13)

V̂ (st+1) , inf
s′∈Bε(st+1)

Ea′∼πφ(·|s′)
[
Qθ(s

′, a′)
]
. (14)

State-Conservative Policy Improvement In this step, we
train the actor πφ by maximizing the objective of SC-MDP

Jε-π(φ) , Est∼D
[

inf
s∈Bε(st)

Ea∼πφ(·|s)
[
Qθ(s, a)

]]
. (15)

The ∞-Norm Based ε-Ball. We choose the ∞-norm as
the distance metric on S to specify Bε(s) in SCPO, i.e.,

Bε(s) , {s′ ∈ S : ‖s′ − s‖∞ ≤ ε}. (16)

Note that the ∞-norm is commonly used to measure noise
and disturbance as it indicates that the intensity of the distur-
bance in each dimension of the state space S is independent.
Besides,∞-norm based ε-ball allows us to propose a simple
and efficient implementation of SCPO in the next section.

5.2 Gradient Based Implementation
To implement the SCPO algorithm proposed in Section 5.1,
we need to solve the following constrained optimization
problem which appears in Equation (12) and Equation (15),

inf
s′∈Bε(s)

Ea′∼πφ(·|s′)[Qθ(s
′, a′)]. (17)

A natural idea to solve Equation (17) is to use the stochas-
tic gradient descent (SGD) method in Bε(s). However, both
performing SGD repeatedly for each batch and estimating
Ea′∼π(·|s′) by sampling actions from π(·|s′) are computa-
tionally expensive in practice. To tackle this problem, we
propose a gradient based method that approximately solves
the constrained optimization problem (17) efficiently.

Gradient Based Regularizer For simplicity, we define
Uθ,φ(s) , Ea∼πφ(·|s)[Qθ(s, a)]. By Taylor’s Theorem, for
given s ∈ S, we can expand Uθ,φ(s′) in Bε(s) as

Uθ,φ(s) + 〈∇sUθ,φ(s), s′ − s〉+ o(‖s′ − s‖2). (18)

disturbance x

1e 3 4
2

0
2

4 dis
tur

ba
nce

 y
1e

3

4
2

0
2

4

V
m

in
1e

2

6
4
2

0
2
4
6

Hopper with deterministic policy

disturbance x

1e 3 4
2

0
2

4 dis
tur

ba
nce

y1e
3

4
2

0
2

4

V
m

in
1e

2

8
6
4
2

0
2
4
6

Hopper with stochastic policy

(a) Deterministic policy.

disturbance x

1e 3 4
2

0
2

4 dis
tur

ba
nce

y1e
3

4
2

0
2

4

V
m

in
1e

2

6
4
2

0
2
4
6

Hopper with deterministic policy

disturbance x

1e 3 4
2

0
2

4 dis
tur

ba
nce

 y
1e

3

4
2

0
2

4

V
m

in
1e

2

8
6
4
2

0
2
4
6

Hopper with stochastic policy

(b) Stochastic policy.

Figure 2: Visualize the local linear property of critics in
SAC (notations refer to Section 5.3). We randomly choose
a state s and two mutually perpendicular directions x, y in
the normalized state space, and visualize the value change
∆V̂ , Eδ

[
∆Qmin

θ (s′, fφ (δ; s))
]

in span(x, y). In Figure
2(a), we make the trained policy in SAC to be deterministic
(i.e., let δ = 0). In Figure 2(b), we sample δ ∼ N (0, 1) 1000
times to estimate the expectation for each point.

Note that when the disturbance ε is small enough, we can
use Ūθ,φ,s(s

′) = Uθ,φ(s) + 〈∇sUθ,φ(s), s′ − s〉 to ap-
proximate Uθ,φ without losing too much information. Then,
rather than solving problem (17) directly, we can solve
infs′∈Bε(s) Ūθ,φ,s(s

′) instead, which enjoys the following
closed form solution under a small∞-norm ball Bε(s),

inf
s′∈Bε(s)

Ūθ,φ,s(s
′) = Uθ,φ(s)− ε‖∇sUθ,φ(s)‖1. (19)

We refer to Equation (19) as a Gradient Based Regularizer
(GBR), which approximates the solution to Equation (17)
via simply subtracting a gradient norm term.

Does the Approximation Make Sense in Practice? In
our experiments, we find that the local linear property of
Uθ,φ(s) for small ε is well satisfied for existing actor-critic
algorithms (we use the popular off-policy algorithm SAC as
an instance to illustrate in Figure 2), and this approximation
achieves satisfactory performance as reported in Section 6.

5.3 State-Conservative SAC: An Instance
Now we apply SCPO proposed in Section 5.1 to existing
actor-critic algorithms to learn robust policies. Specifically,
we present the SCPO-based algorithm State-Conservative
Soft Actor-Critic (SC-SAC) as an instance (Haarnoja et al.
2018), where we use the GBR proposed in Section 5.2 for
seek of efficient implementation.

Soft Actor-Critic (SAC) (Haarnoja et al. 2018) is an off-
policy actor-critic algorithm based on the maximum entropy
RL framework, where the actor aims to maximize both the
expected return and the entropy. According to SAC, we repa-
rameterize the policy as at = fφ (δt; st), where δt is stan-
dard Gaussian noise; we use the target Q-value network Qθ̄
whose parameters θ̄ is updated in a moving average fash-
ion; we use the automatic tuning for the temperature pa-
rameter α and the clipped double Q-learning Qmin

θ (s, a) ,
mini=1,2Qθi(s, a) (Fujimoto, van Hoof, and Meger 2018).

In the policy evaluation step, we train the critic by mini-
mizing the Bellman residual Jε-Q defined in Equation (12),

Algorithm 3: State-Conservative Soft Actor-Critic

1: Input: Critic Qθ1 , Qθ2 . Actor πφ. Initial temperature
parameter α. Step size βQ, βπ, βα. Target smoothing co-
efficient τ .

2: θ̄1 ← θ1, θ̄2 ← θ2,D ← ∅.
3: for each iteration do
4: for each environment step do
5: at ∼ π(·|st), st+1 ∼ p0(·|st, at).
6: D ← D ∪ {st, at, r(st, at), st+1}.
7: end for
8: for each training step do
9: θi ← θi − βQ∇Jε-Q(θ) for i = 1, 2.

10: φ← φ− βπ∇Jε-π(φ).
11: α← α− βα∇Jα(α).
12: θ̄i ← τθi + (1− τ)θ̄i for i = 1, 2.
13: end for
14: end for
15: Output: θ1, θ2, φ

with the target V̂ (st+1) in Equation (14) now defined as

V̂ (st+1) , Eδt∼N
[
Qmin
θ̄ (st+1, fφ (δt+1; st+1))

− ε∇sQmin
θ̄ (st+1, fφ (δt+1; st+1))

−α log πφ (fφ (δt+1; st+1) |st+1)] .

(20)

In the policy improvement step, we train the actor by maxi-
mizing the state-conservative entropy regularized objective

Jε-π(φ) , Est∼D,δt∼N
[
Qmin
θ (st, fφ (δt; st)) (21)

− ε∇sQmin
θ (st, fφ (δt; st))− α log πφ (fφ (δt; st) |st)

]
In the temperature α update step, we tune α by minimizing

Jα(α) , −αEst∼D,δt∼N [log πφ (fφ (δt; st) |st) +H] ,
(22)

whereH is the target value of the entropy term. We show the
pseudo code of SC-SAC in Algorithm 3.

6 Experiments
In this section, we conduct experiments on the SCPO-
based algorithm SC-SAC in several MuJoCo benchmarks
(Todorov, Erez, and Tassa 2012) to evaluate its performance.

Hyperparameter Setting The hyperparameter ε serves
as a regularization coefficient in SCPO. By the definition
in Section 4.2, larger ε implies higher intensity of the dis-
turbance considered in SC-MDP. However, too large ε can
lead to suboptimal policies and thus degraded performance.
Thus, we tune the hyperparameter ε in the Hopper-v2 task
by grid search and find that it achieves the best performance
when ε = 0.005. We then set ε = 0.005 for all the tasks in
our experiments. See Section 6.2 for sensitivity analysis.

Implementation and Evaluation Settings We normalize
the observations for both SAC and SC-SAC in all tasks. We
keep all the parameters in SC-SAC the same as those in orig-
inal SAC. We train policies for 200k steps (i.e., 200 epochs)
in InvertedDoublePendulum-v2 and 1000k steps (i.e., 1000
epochs) in other tasks. We train policy for each task with

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3
re

la
tiv

e
fri

ct
io

n

Hopper SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d SAC

0.6 0.74 0.88 1.02 1.16 1.3
relative mass

0.1

0.62

1.14

1.66

2.18

2.7

re
la

tiv
e

fri
ct

io
n

HalfCheetah SAC

0.6 1.0 1.4 1.8 2.2 2.6
relative mass

0.4

0.8

1.2

1.6

2.0

2.4

re
la

tiv
e

fri
ct

io
n

InvertedDoublePendulum SAC

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper PR-SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d PR-SAC

0.6 0.74 0.88 1.02 1.16 1.3
relative mass

0.1

0.62

1.14

1.66

2.18

2.7

re
la

tiv
e

fri
ct

io
n

HalfCheetah PR-SAC

0.6 1.0 1.4 1.8 2.2 2.6
relative mass

0.4

0.8

1.2

1.6

2.0

2.4

re
la

tiv
e

fri
ct

io
n

InvertedDoublePendulum PR-SAC

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper SC-SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d SC-SAC

0.6 0.74 0.88 1.02 1.16 1.3
relative mass

0.1

0.62

1.14

1.66

2.18

2.7

re
la

tiv
e

fri
ct

io
n

HalfCheetah SC-SAC

0.6 1.0 1.4 1.8 2.2 2.6
relative mass

0.4

0.8

1.2

1.6

2.0

2.4

re
la

tiv
e

fri
ct

io
n

InvertedDoublePendulum SC-SAC

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

4000

5000

6000

7000

8000

9000

return

4000

5000

6000

7000

8000

9000

return

4000

5000

6000

7000

8000

9000

return

3000

4000

5000

6000

7000

8000

9000

10000

return

3000

4000

5000

6000

7000

8000

9000

10000

return

3000

4000

5000

6000

7000

8000

9000

10000

return

Figure 3: Compare SAC, PR-SAC and SC-SAC in target environments with perturbed parameters (mass, friction). We randomly
choose 4 policies from the last 10 epochs for each seed and run 8 episodes for each policy. That is, each point here is evaluated
over 160 episodes (5× 4× 8). More details for the implementations of PR-SAC can be found in Appendix C. The results show
that SC-SAC trained policies are more robust than the original SAC and the PR-SAC in perturbed target environments.

0 1000 2000 3000 4000 5000 6000
returns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ob

ab
ilit

y
de

ns
ity

1e 3 Walker2d
SAC
SC-SAC

0 2000 4000 6000 8000 10000
returns

0

2

4

6

8

pr
ob

ab
ilit

y
de

ns
ity

1e 4 HalfCheetah

Figure 4: Compare the return distribution between SAC and
SC-SAC with truncated Gaussian mass and friction. We
evaluate the return 105 times for each task with policy sam-
pled from last 10 epochs and environmental parameters sam-
pled from truncated Gaussian distributions (see Appendix C
for details). The results show that the return distribution of
SC-SAC is more concentrated in the high-value areas.

5 random seeds. We perturb the parameters (e.g., mass and
friction) in target environments to generate disturbance in
transition dynamics. More details for implementation and
evaluation settings can be found in Appendix C.

6.1 Comparative Evaluation
We compare SC-SAC with the original SAC and PR-MDP
(Tessler, Efroni, and Mannor 2019) in this part.

Comparison with Original SAC We compare SC-SAC
with original SAC in target environments with perturbed en-
vironmental parameters (mass, friction). Figure 3 illustrates
that SC-SAC is more robust than SAC when generalize to
target environments. We then evaluate policies in target en-
vironments with truncated Gaussian distributed mass and
friction, since the perturbation on environmental parameters

0.2 0.4 0.6 0.8 1.0
steps 1e6

0

500

1000

1500

2000

2500

3000

3500

re
tu

rn
s

Hopper

SAC
PR-SAC
SC-SAC

0.2 0.4 0.6 0.8 1.0
steps 1e6

0

1000

2000

3000

4000

5000

re
tu

rn
s

Walker2d

0.2 0.4 0.6 0.8 1.0
steps 1e6

0

2000

4000

6000

8000

10000

re
tu

rn
s

HalfCheetah

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e5

0

2000

4000

6000

8000
re

tu
rn

s

InvertedDoublePendulum

Figure 5: Training curves for different algorithms. The re-
sults show that SC-SAC achieves almost identical perfor-
mance as SAC in source environments for all tasks, while
PR-SAC leads to performance degradation for several tasks.

in the real world usually follows Gaussian distribution. Re-
sults in Figure 4 demonstrate that the return distributions of
SC-SAC are more concentrated in high-value areas than that
of SAC. Note that SC-SAC does not use any prior knowl-
edge about the disturbance (e.g., mass and friction changes)
during training. We further compare the computational effi-
ciency between SC-SAC and SAC in Appendix D.1.

Comparison with the Action Robust Algorithm Ac-
tion robust (AR) algorithms learn robust policies by using
the disturbance in action space to approximate the unmod-
eled disturbance in transition dynamics. We apply the state-

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper SCE-SAC

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper SCI-SAC

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper SC-SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d SCE-SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d SCI-SAC

0.5 0.66 0.82 0.98 1.14 1.3
relative mass

0.4

0.68

0.96

1.24

1.52

1.8

re
la

tiv
e

fri
ct

io
n

Walker2d SC-SAC

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

3000

3250

3500

3750

4000

4250

4500

4750

5000

return

Figure 6: Evaluate polices trained with only the state-
conservative policy evaluation step (SCE-SAC) or the state-
conservative policy improvement step (SCI-SAC). Each
point here is evaluated over 160 episodes (similar to that in
Figure 3). Results show that both the SCE step and the SCI
step in SCPO help to learn robust policies during training.

0.7 0.8 0.9 1.0 1.1 1.2 1.3
relative friction

500

1000

1500

2000

2500

3000

3500

4000

re
tu

rn
s

Hopper

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
relative mass

2000

4000

6000

8000

10000

re
tu

rn
s

InvertedDoublePendulum

SAC
DRM-SAC
DRF-SAC
SC-SAC

Figure 7: Compare SCPO with DR in target environments
with one parameter perturbed. DR uniformly randomizes the
mass (DRM-SAC) or the friction (DRF-SAC) in the range
given in Figure 3 during training in source environments,
while SC-SAC only uses a gradient based regularizer. We
then evaluate them in target environments with perturbed
mass or friction. The results show that SCPO learned poli-
cies are more robust to unmodeled disturbance than DR.

of-the-art AR algorithm PR-MDP, which uses an adversar-
ial policy to disturb actions during training, to SAC (called
PR-SAC) and compare it with SC-SAC in Figure 3. Results
show that SC-SAC achieves higher average returns than PR-
SAC in most tasks. This is mainly because that adversar-
ial training tends to result in degraded performance, while
regularizer-based SCPO maintains the original performance
of SAC more easily (see Figure 5 for the training curves).

Comparison with Domain Randomization The domain
randomization (DR) algorithm randomizes parameters in
source environments during training to learn policies that are
robust to perturbations on these parameters. However, when
testing in target environments, we can suffer from unmod-
eled disturbance that comes from perturbations on unseen
parameters. To compare the robustness against unmodeled
disturbance between SCPO and DR, we train SAC with one
parameter (mass or friction) uniformly randomized in the
range given in Figure 3 and then test it in target environ-
ments with the other parameter perturbed. As shown in Fig-
ure 7, DR trained policies are robust to the disturbance that
is modeled in advance but perform poorly when generalize
to unmodeled disturbance. By contrast, though the perturba-

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0 (SAC)

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0.001

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0.003

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0.005 (SC-SAC)

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0.007

0.2 0.48 0.76 1.04 1.32 1.6
relative mass

0.7

0.82

0.94

1.06

1.18

1.3

re
la

tiv
e

fri
ct

io
n

Hopper = 0.01

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

1000

1500

2000

2500

3000

return

Figure 8: Sensitivity analysis on the hyperparameter ε. We
choose ε = 0.001, 0.003, 0.005, 0.007, 0.01 in SC-SAC and
test in perturbed target environments. Each point is evaluated
over 160 episodes. Results show that SC-SAC is relatively
insensitive to ε within a specific range, while a too large ε
hurts the performance of SAC in source environments.

tions on both mass and friction are unmodeled during train-
ing, SC-SAC trained policies are robust to them consistently.

6.2 Ablation Study
In this part, we conduct ablation study on different compo-
nents of SC-SAC to analyze their effects empirically.

Policy Evaluation v.s. Policy Improvement SCPO based
algorithms include a state-conservative policy evaluation
step and a state-conservative policy improvement step. We
conduct ablation study to analyze their effects in SCPO re-
spectively. Specifically, we apply SCPO to SAC with only
the policy evaluation step (SCE-SAC) or the policy improve-
ment step (SCI-SAC) and then report their performance in
perturbed target environments in Figure 6. Results show that
both the policy evaluation step and the policy improvement
step in SCPO play an important role in the training process.

Sensitivity Analysis on ε We analyze the sensitivity
of SC-SAC to the hyperparameter ε. We evaluate policies
trained with different ε in perturbed environments and show
the results in Figure 8. Results demonstrate that SC-SAC
is relatively insensitive to ε within a specific range (ε ∈
[0.001, 0.005]), while with too large epsilon (ε ≥ 0.01)
SCPO can result in suboptimal policies that perform poorly
in target environments. In practice, we find an ε that makes
the value of GBR be around 0.5% of the original objective
can usually serve as a good initial value for grid search.

7 Conclusion
In this paper, we propose the state-conservative MDP (SC-
MDP) to learn robust policies against disturbance in transi-
tion dynamics without modeling the disturbance in advance.
To solve continuous control tasks, we further propose the
State-Conservative Policy Optimization (SCPO) algorithm
and approximately solve it via a simple Gradient Based Reg-
ularizer (GBR). Experiments show that the SCPO learns ro-
bust policies against the disturbance in transition dynam-
ics. Applying SCPO to on-policy and offline reinforcement
learning algorithms is exciting avenues for future work.

Acknowledgements
We would like to thank all the anonymous reviewers for their
insightful comments. This work was supported in part by
National Science Foundations of China grants U19B2026,
U19B2044, 61822604, 61836006, and 62021001, and the
Fundamental Research Funds for the Central Universities
grant WK3490000004.

References
Abdullah, M. A.; Ren, H.; Ammar, H. B.; Milenkovic, V.;
Luo, R.; Zhang, M.; and Wang, J. 2019. Wasserstein robust
reinforcement learning. arXiv preprint arXiv:1907.13196.
Blanchet, J. H.; and Murthy, K. R. A. 2019. Quantifying Dis-
tributional Model Risk via Optimal Transport. Math. Oper.
Res., 44(2): 565–600.
Boyd, S.; and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.
Fujimoto, S.; van Hoof, H.; and Meger, D. 2018. Address-
ing function approximation error in actor-critic methods. In
Dy, J.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, 1587–1596.
PMLR.
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al.
2018. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905.
Hou, L.; Pang, L.; Hong, X.; Lan, Y.; Ma, Z.; and Yin, D.
2020. Robust reinforcement learning with Wasserstein con-
straint. arXiv preprint arXiv:2006.00945.
Iyengar, G. N. 2005. Robust Dynamic Programming. Math.
Oper. Res., 30(2): 257–280.
Jiang, Y.; Li, C.; Dai, W.; Zou, J.; and Xiong, H. 2021.
Monotonic robust policy optimization with model discrep-
ancy. In Meila, M.; and Zhang, T., eds., Proceedings of the
38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research,
4951–4960. PMLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In International
Conference on Learning Representations.
Mandlekar, A.; Zhu, Y.; Garg, A.; Fei-Fei, L.; and Savarese,
S. 2017. Adversarially robust policy learning: Active con-
struction of physically-plausible perturbations. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 3932–3939.
Mankowitz, D. J.; Levine, N.; Jeong, R.; Abdolmaleki, A.;
Springenberg, J. T.; Shi, Y.; Kay, J.; Hester, T.; Mann, T.;
and Riedmiller, M. 2020. Robust reinforcement learning for
continuous control with model misspecification. In Interna-
tional Conference on Learning Representations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,

S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529–533.
Nilim, A.; and Ghaoui, L. 2004. Robustness in Markov
Decision Problems with Uncertain Transition Matrices. In
Thrun, S.; Saul, L.; and Schölkopf, B., eds., Advances in
Neural Information Processing Systems, volume 16. MIT
Press.
OpenAI; Akkaya, I.; Andrychowicz, M.; Chociej, M.;
Litwin, M.; McGrew, B.; Petron, A.; Paino, A.; Plappert, M.;
Powell, G.; Ribas, R.; Schneider, J.; Tezak, N.; Tworek, J.;
Welinder, P.; Weng, L.; Yuan, Q.; Zaremba, W.; and Zhang,
L. 2019. Solving Rubik’s cube with a robot hand. arXiv
preprint.
Packer, C.; Gao, K.; Kos, J.; Krähenbühl, P.; Koltun, V.; and
Song, D. 2018. Assessing generalization in deep reinforce-
ment learning. arXiv preprint arXiv:1810.12282.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In Precup, D.;
and Teh, Y. W., eds., Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, 2817–2826. PMLR.
Rajeswaran, A.; Ghotra, S.; Ravindran, B.; and Levine, S.
2017. EPOpt: Learning Robust Neural Network Policies
Using Model Ensembles. In International Conference on
Learning Representations. OpenReview.net.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tessler, C.; Efroni, Y.; and Mannor, S. 2019. Action ro-
bust reinforcement learning and applications in continuous
control. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, 6215–6224. PMLR.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 23–30.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
5026–5033.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D.;
and Hsieh, C.-J. 2020. Robust Deep Reinforcement Learn-
ing against Adversarial Perturbations on State Observations.
In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.;
and Lin, H., eds., Advances in Neural Information Process-
ing Systems, volume 33, 21024–21037. Curran Associates,
Inc.

