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Abstract

In online reinforcement learning (online RL), balancing exploration and exploitation is crucial for finding
an optimal policy in a sample-efficient way. To achieve this, existing sample-efficient online RL algorithms
typically consist of three components: estimation, planning, and exploration. However, in order to cope with
general function approximators, most of them involve impractical algorithmic components to incentivize
exploration, such as optimization within data-dependent level-sets or complicated sampling procedures. To
address this challenge, we propose an easy-to-implement RL framework called Maximize to Explore (MEX),
which only needs to optimize unconstrainedly a single objective that integrates the estimation and planning
components while balancing exploration and exploitation automatically. Theoretically, we prove that MEX
achieves a sublinear regret with general function approximations for Markov decision processes (MDP) and
is further extendable to two-player zero-sum Markov games (MG). Meanwhile, we adapt deep RL baselines
to design practical versions of MEX, in both model-free and model-based manners, which can outperform
baselines by a stable margin in various MuJoCo environments with sparse rewards. Compared with existing
sample-efficient online RL algorithms with general function approximations, MEX achieves similar sample
efficiency while enjoying a lower computational cost and is more compatible with modern deep RL methods.
Our codes are available at https://github.com/agentification/MEX.
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1 Introduction

The crux of online reinforcement learning (online RL) lies in maintaining a balance between i) exploiting the
current knowledge of the agent about the environment and ii) exploring unfamiliar areas (Sutton and Barto,
2018). To fulfill this, agents in existing sample-efficient RL algorithms predominantly undertake three tasks: i)
estimate a hypothesis using historical data to encapsulate their understanding of the environment; ii) perform
planning based on the estimated hypothesis to exploit their current knowledge; iii) further explore the unknown
environment via carefully designed exploration strategies.

There exists a long line of research on integrating the aforementioned three components harmoniously to
find the optimal policy in a sample-efficient manner. From theoretical perspectives, existing theories aim to
minimize the notion of online external regret which measures the cumulative suboptimality gap of the policies
learned during online learning. It is well studied that one can design both statistically and computationally
efficient algorithms (e.g., upper confidence bound (UCB), Azar et al. (2017); Jin et al. (2020b); Cai et al. (2020);
Zhou et al. (2021)) with sublinear online regret for tabular and linear Markov decision processes (MDPs). But
when it comes to MDPs with general function approximations, most of them involve impractical algorithmic
components to incentivize exploration. Usually, to cope with general function approximations, agents need to
solve constrained optimization problems within data-dependent level-sets (Jin et al., 2021a; Du et al., 2021),
or sample from complicated posterior distributions over the space of hypotheses (Dann et al., 2021; Agarwal
and Zhang, 2022; Zhong et al., 2022), both of which pose considerable challenges for implementation. From
a practical perspective, a prevalent approach in deep RL for balancing exploration and exploitation is to use
an ensemble of neural networks (Wiering and Van Hasselt, 2008; Osband et al., 2016; Chen et al., 2017; Lu
and Van Roy, 2017; Kurutach et al., 2018; Chua et al., 2018; Lee et al., 2021), which serves as an empirical
approximation of the UCB method. However, such an ensemble method suffers from high computational cost
and lacks a theoretical guarantee when the underlying MDP is neither linear nor tabular. As for other deep
RL algorithms for exploration (Haarnoja et al., 2018a; Aubret et al., 2019; Burda et al., 2018; Bellemare et al.,
2016; Choi et al., 2018), such as the curiosity-driven method (Pathak et al., 2017), it also remains unknown in
theory whether they are provably sample-efficient in the context of general function approximations.

Hence, in this paper, we are aimed at tackling these issues and answering the following question:

Under general function approximation, can we design a sample-efficient and
easy-to-implement RL framework to trade off between exploration and exploitation?

Towards this goal, we propose an easy-to-implement RL framework, Maximize to Explore (MEX), as an affirma-
tive answer to above question. In order to strike a balance between exploration and exploitation, MEX propose
to maximize a weighted sum of two objectives: (a) the optimal expected total return associated with a given
hypothesis, and (b) the negative estimation error of that hypothesis. Consequently, MEX naturally combines
planning and estimation components in just one single objective. By choosing the hypothesis that maximizes
the weighted sum and executing the optimal policy with respect to the chosen hypothesis, MEX automatically
balances between exploration and exploitation.

We highlight that the objective of MEX is not obtained through the Lagrangian duality of the constrained
optimization objective within data-dependent level-sets (Jin et al., 2021a; Du et al., 2021; Chen et al., 2022b).
This is because the coefficient of the weighted sum, which remains fixed, is data-independent and predetermined
for all episodes. Contrary to the Lagrangian duality, MEX does not necessitate an inner loop of optimization
for dual variables, thereby circumventing the complications associated with minimax optimization. As a
maximization-only framework, MEX is friendly to implementations with neural networks and does not rely on
sampling or ensemble.

In the theory part, we prove that MEX achieves a sublinear Õ(Poly(H)d
1/2
GEC(1/

√
HK)K1/2) regret under

mild structural assumptions and is thus sample-efficient. Here K is the number of episodes, H is the horizon
length, and dGEC(·) is the Generalized Eluder Coefficient (GEC) (Zhong et al., 2022) that characterizes
the complexity of learning the underlying MDP using general function approximations in the online setting.
Because the class of low-GEC MDPs includes almost all known theoretically tractable MDP instances, our
result can be tailored to a multitude of specific settings with either a model-free or a model-based hypothesis,
such as MDPs with low Bellman eluder dimension (Jin et al., 2021a), MDPs of bilinear class (Du et al., 2021),
and MDPs with low witness rank (Sun et al., 2019). Thanks to the flexibility of the MEX framework, we further
extend it to online RL in two-player zero-sum Markov games (MGs), for which we also generalize the definition
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of GEC to two-player zero-sum MGs and establish the sample efficiency with general function approximations.
Finally, as the low-GEC class also contains many tractable Partially Observable MDP (POMDP) classes (Zhong
et al., 2022), MEX can also be applied to these POMDPs.

Moving beyond theory and into practice, we adapt famous RL baselines TD3 (Fujimoto et al., 2018) and MBPO

(Janner et al., 2019) to design practical versions of MEX in model-free and model-based fashion, respectively.
On various MuJoCo environments (Todorov et al., 2012) with sparse rewards, experimental results show that
MEX outperforms baselines steadily and significantly. Compared with other deep RL algorithms, MEX has low
computational overhead and easy implementation while maintaining a theoretical guarantee.

1.1 Main Contributions

We conclude our main contributions from the following three perspectives.

1. We propose an easy-to-implement RL algorithm framework MEX that unconstrainedly maximizes a single
objective to fuse estimation and planning, automatically trading off between exploration and exploitation.
Under mild structural assumptions, we prove that MEX achieves a sublinear regret

Õ
(
Poly(H) · dGEC(1/

√
HK)

1
2 ·K 1

2

)
with general function approximators, and thus is sample-efficient. HereK denotes the number of episodes,
Poly(H) is a polynomial term in horizon length H which is specified in Section 5, dGEC(·) is the Gener-
alized Eluder Coefficient (GEC) (Zhong et al., 2022) of the underlying MDP.

2. We instantiate the generic MEX framework to solve several model-free and model-based MDP instances
and establish corresponding theoretical results. Beyond MDPs, we further extend the MEX framework to
two-player zero-sum MGs and also prove the sample efficiency with an extended definition of GEC.

3. We design deep RL implementations of MEX in both model-free and model-based styles. Experiments on
various MuJoCo environments with sparse rewards demonstrate the effectiveness of MEX framework.

1.2 Related Works

Sample-efficient RL with function approximation. The success of DRL methods has motivated a line
of works focused on function approximation scenarios. This line of works is originated in the linear function
approximation case (Wang et al., 2019; Yang and Wang, 2019; Cai et al., 2020; Jin et al., 2020b; Zanette
et al., 2020a; Ayoub et al., 2020; Yang et al., 2020; Modi et al., 2020; Zhou et al., 2021; Zhong and Zhang,
2023) and is later extended to general function approximations. Wang et al. (2020) first study the general
function approximation using the notion of eluder dimension (Russo and Van Roy, 2013), which takes the linear
MDP (Jin et al., 2020b) as a special case but with inferior results. Zanette et al. (2020b) consider a different
type of framework based on Bellman completeness, which assumes that the class used for approximating the
optimal Q-functions is closed in terms of the Bellman operator and improves the results for linear MDP. After
this, Jin et al. (2021a) consider the eluder dimension of the class of Bellman residual associated with the
RL problems, which captures more solvable problems (low Bellman eluder (BE) dimension). Another line of
works focuses on the low-rank structures of the problems, where Jiang et al. (2017a) propose the Bellman rank
for model-free RL and Sun et al. (2019) propose the witness rank for model-based RL. Following these two
works, Du et al. (2021) propose the bilinear class, which contains more MDP models with low-rank structures
(Azar et al., 2017; Sun et al., 2019; Jin et al., 2020b; Modi et al., 2020; Cai et al., 2020; Zhou et al., 2021) by
allowing a flexible choice of discrepancy function class. However, it is known that neither BE nor bilinear class
captures each other. Dann et al. (2021) first consider eluder-coefficient-type complexity measure on the Q-type
model-free RL. It was later extended by Zhong et al. (2022) to cover all the above-known solvable problems
in both model-free and model-based manners. Foster et al. (2021, 2023) study another notion of complexity
measure, the decision-estimation coefficient (DEC), which also unifies the BE dimension and bilinear class and
is appealing due to the matching lower bound in some decision-making problems but may not be applied to
the classical optimism-based or sampling-based methods due to the presence of a minimax subroutine in the
definition. Chen et al. (2022a); Foster et al. (2022) extend the vanilla DEC by incorporating an optimistic
modification. Chen et al. (2022b) study Admissible Bellman Characterization (ABC) class to generalize BE.
They also extend the GOLF algorithm (Jin et al., 2021a) and the Bellman completeness in model-free RL
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by considering more general (vector-form) discrepancy loss functions and obtaining sharper bounds in some
problems. Xie et al. (2022) connect the online RL with the coverage condition in the offline RL, and also study
the GOLF algorithm proposed in Jin et al. (2021a).

Algorithmic design in sample-efficient RL with function approximation. The most prominent ap-
proach in this area is based on the principle of “Optimism in the Face of Uncertainty” (OFU), which dates back
to Auer et al. (2002). For instance, for linear function approximation, Jin et al. (2020b) propose an optimistic
variant of Least-Squares Value Iteration (LSVI), which achieves optimism by adding a bonus at each step. For
the general case, Jiang et al. (2017b) first propose an elimination-based algorithm with optimism in model-free
RL and is extended to model-based RL by Sun et al. (2019). After these, Du et al. (2021); Jin et al. (2021a)
propose two OFU-based algorithms, which are more similar to the lin-UCB algorithm (Abbasi-Yadkori et al.,
2011) studied in the linear contextual bandit literature. The model-based counterpart (Optimistic Maximum
Likelihood Estimation (OMLE)) is studied in Liu et al. (2022a); Chen et al. (2022a). Specifically, these algo-
rithms explicitly maintain a confidence set that contains the ground truth with high probability and conducts
a constrained optimization step to select the most optimistic hypothesis in the confidence set. The other line
of works studies another powerful algorithmic framework based on posterior sampling. For instance, Zanette
et al. (2020a) study randomized LSVI (RLSVI), which can be interpreted as a sampling-based algorithm and
achieves an order-optimal result for linear MDPs. For general function approximations, the works mainly follow
the idea of the “feel-good” modification of the Thompson sampling algorithm (Thompson, 1933) proposed in
Zhang (2022a). These algorithms start from some prior distribution over the hypothesis space and update the
posterior distribution according to the collected samples but with certain optimistic modifications in either the
prior or the loglikelihood function. Then the hypothesis for each iteration is sampled from the posterior and
guides data collection. In particular, Dann et al. (2021) study the model-free Q-type problem, and Agarwal
and Zhang (2022) study the model-based problems, but under different notions of complexity measures. Zhong
et al. (2022) further utilize the idea in Zhang (2022a) and extend the posterior sampling algorithm in Dann
et al. (2021) to be a unified sampling-based framework to solve both model-free and model-based RL problems,
which is also shown to apply to the more challenging partially observable setting. In addition to the OFU-based
algorithm and the sampling-based framework, Foster et al. (2021) propose the Estimation-to-Decisions (E2D)
algorithm, which can solve problems with low Decision-Estimation Coefficient (DEC) but requires solving a
complicated minimax subroutine to fit in the framework of DEC.

Relationship with reward-biased maximum likelihood estimation. Our work is also related to a line
of work in reward-biased maximum likelihood estimation. While Kumar and Becker (1982) firstly proposed
an estimation criterion that biases maximum likelihood estimation (RBMLE) with the cost or the value, their
algorithm is actually different from ours, by their Equation (6) and (8) in Section 3, their algorithm performs the
estimation of model and policy optimization separately, for which they only obtained asymptotic convergence
guarantees. Also, how well their decision rule explores remains unknown in theory. In contrast, MEX adopts
a single optimization objective that combines estimation with policy optimization, which also ensures sample-
efficient online exploration. Liu et al. (2020b); Hung et al. (2021); Mete et al. (2021, 2022b,a) study RBMLE
in Multi-arm bandit (Liu et al., 2020b), Linear Stochastic Bandits (Hung et al., 2021), tabular RL (Mete
et al., 2021), and Linear Quadratic Regulator settings (linear parameterized models of MDPs, (Mete et al.,
2022b,a)) and also obtain the theoretical guarantees. While these settings are special cases for our proposed
algorithms, our proven theoretical guarantee can also be generalized to these concrete cases. As we claim in this
paper, our main contribution is to address the exploration-exploitation trade-off issue under general function
approximation, which makes our work differ from these papers. Wu et al. (2022) consider an algorithm similar
to MEX, but our theory differs from theirs in both techniques and results. Our theory is based upon a unified
framework of online RL with general function approximations, which covers their setup for the model-based
hypothesis with kernel function approximation (RKHS). More importantly, they derived asymptotic regret of
their algorithm based upon certain uniform boundedness and asymptotic normality assumptions, which are
relatively strong conditions. In contrast, we derive finite sample regret upper bound for MEX, and the only
fundamental assumption needed is a lower Generalized Eluder Coefficient (GEC) MDP, which contains almost
all known theoretically tractable MDP classes (therefore covers their RKHS model). Finally, our paper further
extends MEX to two-player zero-sum Markov games where similar algorithms and theories are previously
unknown to the best of our knowledge. Moreover, the works mentioned above do not implement experiments
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in deep RL environments, while we propose deep RL implementations and demonstrate their effectiveness in
several MuJoco tasks.

Exploration in deep RL. There has also been a long line of works that studies the exploration-exploitation
trade-off from a practical perspective, where a prominent approach is referred to as the curiosity-driven method
(Pathak et al., 2017). Curiosity-driven method focuses on the intrinsic rewards (Pathak et al., 2017) (to handle
the sparse extrinsic reward case) when making decisions, whose formulation can be largely grouped into either
encouraging the algorithm to explore “novel” states (Bellemare et al., 2016; Lopes et al., 2012) or encouraging
the algorithm to pick actions that reduce the uncertainty in its knowledge of the environment (Houthooft et al.,
2016; Mohamed and Jimenez Rezende, 2015; Stadie et al., 2015). These methods share the same theoretical
motivation as the OFU principle. In particular, one popular approach in this area is to use ensemble methods,
which combine multiple neural networks of the value function and (or) policy (see (Wiering and Van Hasselt,
2008; Osband et al., 2016; Chen et al., 2017; Lu and Van Roy, 2017; Kurutach et al., 2018; Chua et al., 2018;
Lee et al., 2021) and reference therein). For instance, Chen et al. (2017) leverage the idea of upper confidence
bound by estimating the uncertainty via ensembles to improve the sample efficiency. However, the uncertainty
estimation via ensembles is more computationally inefficient as compared to the vanilla algorithm. Meanwhile,
these methods lack theoretical guarantees beyond tabular and linear settings. It remains unknown in theory
whether they are provably sample-efficient in the context of general function approximations. There is a rich
body of literature, and we refer interested readers to Section 4 of Zha et al. (2021) for a comprehensive review.

Two-player zero-sum Markov game. There have been numerous works on designing provably efficient
algorithms for zero-sum Markov games (MGs). In the tabular case, Bai et al. (2020); Bai and Jin (2020); Liu
et al. (2020a) propose algorithms with regret guarantees polynomial in the number of states and actions. Xie
et al. (2020); Chen et al. (2021) then study the MGs in the linear function approximation case and design

algorithms with a Õ(poly(d,H)
√
K) regret, where d is the dimension of the linear features. These approaches

are later extended to general function approximations by Jin et al. (2021b); Huang et al. (2021); Xiong et al.
(2022), where the former two works studied OFU-based algorithms and the last one studied posterior sampling.

1.3 Notations and Outlines

For a measurable space X , we use ∆(X ) to denote the set of probability measure on X . For an integer n ∈ N, we
use [n] to denote the set {1, · · · , n}. For a random variable X, we use E[X] and V[X] to denote its expectation
and variance respectively. For two probability densities on X , we denote their Hellinger distance DH as

DH(p∥q) =
1

2

∫
X

(√
p(x)−

√
q(x)

)2
dx.

For two functions f(x) and g(x), we denote f ≲ g if there is a constant C such that f(x) ≤ C · g(x) for any x.
The paper is organized as follows. In Section 2, we introduce the basics of online RL in MDPs, where we

also define the settings for general function approximations. In Section 3, we propose the MEX framework, and
we provide generic theoretical guarantees for MEX in Section 4. In Section 5, we instantiate MEX to solve several
model-free and model-based MDP instances, with some details referred to Appendix B. We further extend the
algorithm and the theory of MEX to zero-sum two-player MGs in Section 6. In Section 7, we conduct deep RL
experiments to demonstrate the effectiveness of MEX in various MuJoCo environments.

2 Preliminaries

2.1 Episodic Markov Decision Process and Online Reinforcement Learning

We consider an episodic MDP defined by a tuple (S,A, H,P, r), where S and A are the state and action spaces,
H ∈ N+ is a finite horizon, P = {Ph}h∈[H] with Ph : S ×A 7→ ∆(S) the transition kernel at the h-th timestep,
and r = {rh}h∈[H] with rh : S×A → [0, 1] the reward function at the h-th timestep. Without loss of generality,
we assume that the reward function r is both deterministic and known by the learner.
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We consider online reinforcement learning in the episodic MDP, where the agent interacts with the MDP
for K ∈ N+ episodes through the following protocol. At the beginning of the k-th episode, the agent selects a
policy πk = {πk

h : S 7→ ∆(A)}h∈[H]. Then at the h-th timestep of this episode, the agent is at some state xkh
and it takes an action akh ∼ πk

h(· |xkh). After receiving the reward rkh = rh(x
k
h, a

k
h), it transits to the next state

xkh+1 ∼ Ph(· |xkh, akh). When it reaches the state xkH+1, it ends the k-th episode. Without loss of generality, we

assume that the initial state xk1 = x is fixed all k ∈ [K]. Our algorithm and analysis can be directly generalized
to the setting where x1 is sampled from a distribution on S.

Policy and value functions. For any given policy π = {πh : S 7→ ∆(A)}h∈[H], we denote by V π
h : S 7→ R+

and Qπ
h : S × A 7→ R+ its state-value function and its state-action value function at the h-th timestep, which

characterize the expected total rewards received by executing the policy π starting from some xh = x ∈ S (or
xh = x ∈ S, ah = a ∈ A, resp.), till the end of the episode. Specifically, for any (x, a) ∈ S ×A,

V π
h (x) := EP,π

[
H∑

h′=h

rh′(xh′ , ah′)

∣∣∣∣∣xh = x

]
, Qπ

h(x, a) := EP,π

[
H∑

h′=h

rh′(xh′ , ah′)

∣∣∣∣∣xh = x, ah = a

]
. (2.1)

It is known that there exists an optimal policy, denoted by π∗, which has the optimal state-value function for
all initial states (Puterman, 2014). That is, V π∗

h (x) = supπ V
π
h (x) for all h ∈ [H] and x ∈ S. For simplicity,

we abbreviate V π∗
as V ∗ and the optimal state-action value function Qπ∗

as Q∗. Moreover, the optimal value
functions Q∗ and V ∗ satisfy the following Bellman optimality equation (Puterman, 2014),

V ∗
h (x) = max

a∈A
Q∗

h(x, a), Q∗
h(x, a) = (ThQ∗

h+1)(x, a) := rh(x, a) + Ex′∼Ph(· | x,a)

[
max
a′∈A

Q∗
h+1 (x

′, a′)
]
, (2.2)

with Q∗
H+1(·, ·) = 0 for all (x, a, h) ∈ S ×A× [H]. We call Th the Bellman optimality operator at timestep h.

Also, for any two functions Qh and Qh+1 on S ×A, we define

Eh(Qh, Qh+1;x, a) := Qh(x, a)− ThQh+1(x, a), ∀(x, a) ∈ S ×A, (2.3)

as the Bellman residual at timestep h of (Qh, Qh+1).

Performance metric. We measure the performance of an online RL algorithm after K episodes by its regret.
We assume that the learner predicts the optimal policy π∗ via πk in the k-th episode for each k ∈ [K]. Then
the regret after K episodes is defined as the cumulative suboptimality gap of {πk}k∈[K]

1, defined as

Regret(K) =

K∑
k=1

V ∗
1 (x1)− V πk

1 (x1). (2.4)

The target of sample-efficient online RL is to achieve sublinear regret (2.4) with respect to K.

2.2 Function Approximation: Model-Free and Model-Based Hypothesis

To deal with MDPs with large or even infinite state space S, we introduce a class of function approximators.
In specific, we consider an abstract hypothesis class H = H1×· · ·×HH , which can be specified to model-based
and model-free settings, respectively. Also, we denote Π = Π1×· · ·×ΠH as the space of all Markovian policies.

The following two examples show how to specify H for model-free and model-based settings.

Example 2.1 (Model-free hypothesis class). For model-free setting, H contains approximators of the optimal
state-action value function of the MDP, i.e., Hh ⊆ {fh : S ×A 7→ R}. For any f = (f1, · · · , fH) ∈ H:

1. we denote corresponding state-action value function Qf = {Qh,f}h∈[H] with Qh,f = fh;
2. we denote corresponding state-value function Vf = {Vh,f}h∈[H] with Vh,f (·) = maxa∈AQh,f (·, a), and we

denote the corresponding optimal policy by πf = {πh,f}h∈[H] with πh,f (·) = argmaxa∈AQh,f (·, a).
3. we denote the optimal state-action value function under the true model, i.e., Q∗, by f∗.

1We allow the agent to predict the optimal policy via πk while executing some other exploration policy πk
exp to interact with

the environment and collect data, as is considered in the related literature (Sun et al., 2019; Du et al., 2021; Zhong et al., 2022)
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Example 2.2 (Model-based hypothesis class). For model-based setting, H contains approximators of the
transition kernel of the MDP, for which we denote f = Pf = (P1,f , · · · ,PH,f ) ∈ H. For any (f, π) ∈ H ×Π:

1. we denote V π
f = {V π

h,f}h∈[H] as the state-value function induced by model Pf and policy π.
2. we denote Vf = {Vh,f}h∈[H] as the optimal state-value function under model Pf , i.e., Vh,f = supπ∈Π V

π
h,f .

The corresponding optimal policy is denoted by πf = {πh,f}h∈[H], where πh,f = arg supπ∈Π V
π
h,f .

3. we denote the true model P of the MDP as f∗.

We remark that the main difference between the model-based hypothesis (Example 2.2) and the model-free
hypothesis (Example 2.1) is that model-based RL directly learns the transition kernel of the underlying MDP,
while model-free RL learns the optimal state-action value function. Since we do not add any specific structural
form to the hypothesis class, e.g., linear function or kernel function, we are in the context of general function
approximations (Sun et al., 2019; Jin et al., 2021a; Du et al., 2021; Zhong et al., 2022; Chen et al., 2022b).

3 Algorithm Framework: Maximize to Explore (MEX)

In this section, we propose an algorithm framework, named Maximize to Explore (MEX, Algorithm 1), for online
RL in MDPs with general function approximations. With a novel single objective, MEX automatically balances
the goal of exploration and exploitation in online RL. Since MEX only requires an unconstrained maximization
procedure, it is friendly to implement in practice.

We first give a generic algorithm framework and then instantiate it to model-free (Example 2.1) and model-
based (Example 2.2) hypotheses respectively.

Generic algorithm. In each episode k ∈ [K], the agent first estimates a hypothesis fk ∈ H using historical
data {Ds}k−1

s=1 by maximizing a composite objective (3.1). Specifically, in order to achieve exploiting history
knowledge while encouraging exploration, the agent considers a single objective that sums: (a) the negative
loss −Lk−1

h (f) induced by the hypothesis f , which represents the exploitation of the agent’s current knowledge;
(b) the expected total return of the optimal policy associated with this hypothesis, i.e., V1,f , which represents
exploration for a higher return. With a tuning parameter η > 0, the agent balances the weight put on the
tasks of exploitation and exploration.

Then the agent predicts π∗ via the optimal policy associated with the hypothesis fk, i.e., πfk . Also, the
agent executes some exploration policy πexp(f

k) to collect data Dk = {(xkh, akh, rkh, xkh+1)}Hh=1 and updates the

loss function Lk
h(·). The choice of the loss function L(·) varies between model-free and model-based hypotheses,

which we specify in the following. The choice of the exploration policy πexp(f
k) depends on the specific MDP

structure, and we refer to examples in Section 5 and Appendix B for detailed discussions.
We need to highlight that MEX is not a Lagrangian duality of the constrained optimization objectives within

data-dependent level-sets proposed by previous works (Jin et al., 2021a; Du et al., 2021; Chen et al., 2022b).
In fact, MEX only needs to fix the parameter η across each episode k. Thus η is independent of data and
predetermined, which contrasts Lagrangian methods that involve an inner loop of optimization for the dual
variables. We also remark that we can rewrite (3.1) as a joint optimization (f, π) = argsupf∈H,π∈Π V

π
1,f (x1)−

η
∑H

h=1 L
k−1
h (f). When η tends to infinity, MEX conincides with the vanilla actor-critic framework (Konda and

Tsitsiklis, 1999), where the critic f minimizes the estimation error and the actor π conducts greedy policy
associated with the critic f . In the following two parts, we instantiate Algorithm 1 to model-based and
mode-free hypotheses respectively by specifying the loss function Lk

h(f).

Model-free algorithm. For model-free hypothesis (Example 2.1), the composite objective (3.1) becomes

fk = argsup
f∈H

{
max
a1∈A

Q1,f (x1, a1)− η ·
H∑

h=1

Lk−1
h (f)

}
. (3.2)

Regarding the choice of the loss function, for seek of theoretical analysis, to deal with MDPs with low Bellman
eluder dimension (Jin et al., 2021a) and MDPs of bilinear class (Du et al., 2021), we assume the existence of
certain function l, which generalizes the notion of Bellman residual.
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Algorithm 1 Maximize to Explore (MEX)

1: Input: Hypothesis class H, parameter η > 0.
2: for k = 1, · · · ,K do
3: Solve fk ∈ H via

fk = argsup
f∈H

{
V1,f (x1)− η ·

H∑
h=1

Lk−1
h (f)

}
. (3.1)

4: Execute πexp(f
k) to collect data Dk = {Dk

h}h∈[H] with Dk
h = (xkh, a

k
h, r

k
h, x

k
h+1).

5: Calculate the loss function Lk
h(·) for each h ∈ [H] based on historical data {Ds}s∈[k].

6: Predict the optimal policy via πfk .
7: end for

Assumption 3.1. The function l : H×Hh ×Hh+1 × (S ×A× R× S) 7→ R satisfies2:
1. (Generalized Bellman completeness) (Zhong et al., 2022; Chen et al., 2022b). There exists a functional

operator Ph : Hh+1 7→ Hh such that for any (f ′, fh, fh+1) ∈ H×Hh×Hh+1 and Dh = (xh, ah, rh, xh+1) ∈
S ×A× R× S,

lf ′
(
(fh, fh+1);Dh

)
− lf ′

(
(Phfh+1, fh+1);Dh

)
= Exh+1∼Ph(·|xh,ah)

[
lf ′
(
(fh, fh+1);Dh

)]
,

where we require that Phf
∗
h+1 = f∗h and that Phfh+1 ∈ Hh for any fh+1 ∈ Hh+1 and h ∈ [H];

2. (Boundedness). It holds that |lf ′((fh, fh+1);Dh)| ≤ Bl for some Bl > 0 and any (f ′, fh, fh+1) ∈ H ×
Hh ×Hh+1 and Dh = (xh, ah, rh, xh+1) ∈ S ×A× R× S.

Intuitively, the operator Ph can be considered as a generalization of the Bellman optimality operator. We
set the choice of l and P for concrete model-free examples in Section 5. We then set the loss function Lk

h as an
empirical estimation of the generalized squared Bellman error |Exh+1∼Ph(·|xh,ah)[lfs((fh, fh+1),Ds

h)]|2, given by

Lk
h(f) =

k∑
s=1

lfs

(
(fh, fh+1);Ds

h

)2 − inf
f ′
h∈Hh

k∑
s=1

lfs

(
(f ′h, fh+1);Ds

h

)2
. (3.3)

We remark that the subtracted infimum term in (3.3) is for handling the variance terms in the estimation to
achieve a fast theoretical rate. Similar essential ideas are also adopted by Jin et al. (2021a); Xie et al. (2021);
Dann et al. (2021); Jin et al. (2022); Lu et al. (2022); Agarwal and Zhang (2022); Zhong et al. (2022).

Model-based algorithm. For model-based hypothesis (Example 2.2), the composite objective (3.1) becomes

fk = argsup
f∈H

{
sup
π∈Π

V π
1,Pf

(x1)− η ·
H∑

h=1

Lk−1
h (f)

}
, (3.4)

which gives a joint optimization over the model Pf and the policy π. In the model-based algorithm, we choose
the loss function Lk

h as the negative log-likelihood loss, defined as

Lk
h(f) = −

k∑
s=1

logPh,f (x
s
h+1|xsh, ash). (3.5)

4 Regret Analysis for MEX Framework

In this section, we analyze the regret of the MEX framework (Algorithm 1). Specifically, we give an upper bound
of its regret which holds for both model-free (Example 2.1) and model-based (Example 2.2) settings. To derive
the theorem, we first present three key assumptions needed. In Section 5, we specify the generic upper bound
to specific examples of MDPs and hypothesis classes that satisfy these assumptions.

We first assume that the hypothesis class H is well-specified, containing the true hypothesis f∗.

2For simplicity we drop the dependence of l on the index h since this makes no confusion. Similar simplications are used later.
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Assumption 4.1 (Realizablity). We assume that the true hypothesis f∗ ∈ H.

Moreover, we make a structural assumption on the underlying MDP to ensure sample-efficient online RL.
Inspired by Zhong et al. (2022), we require the MDP to have low Generalized Eluder Coefficient (GEC). In
MDPs with low GEC, the agent can effectively mitigate out-of-sample prediction error by minimizing in-sample
prediction error based on the historical data. Therefore, the GEC can be used to measure the difficulty inherent
in generalization from the observation to the unobserved trajectory, thus further quantifying the hardness of
learning the MDP. We refer the readers to Zhong et al. (2022) for a detailed discussion of GEC.

To define GEC, we introduce a discrepancy function

ℓf ′(f ; ξh) : H×H× (S ×A× R× S) 7→ R,

which characterizes the error incurred by hypothesis f ∈ H on data ξh = (xh, ah, rh, xh+1). Specific choices of
ℓ are given in Section 5 for concrete model-free and model-based examples.

Assumption 4.2 (Low generalized eluder coefficient (Zhong et al., 2022)). We assume that given an ϵ > 0,
there exists d(ϵ) ∈ R+, such that for any sequence of {fk}k∈[K] ⊆ H, {πexp(fk)}k∈[K] ⊆ Π,

K∑
k=1

V1,fk − V
π
fk

1 ≤ inf
µ>0

{
µ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] +
d(ϵ)

2µ
+
√
d(ϵ)HK + ϵHK

}
.

We denote the smallest number d(ϵ) ∈ R+ satisfying this condition as dGEC(ϵ).

As is shown by Zhong et al. (2022), the low-GEC MDP class covers almost all known theoretically tractable
MDP instances, such as linear MDP (Yang and Wang, 2019; Jin et al., 2020b), linear mixture MDP (Ayoub
et al., 2020; Modi et al., 2020; Cai et al., 2020), MDPs of low witness rank (Sun et al., 2019), MDPs of low
Bellman eluder dimension (Jin et al., 2021a), and MDPs of bilinear class (Du et al., 2021).

Finally, we make a concentration-style assumption which characterizes how the loss function Lk
h is related

to the expectation of the discrepancy function E[ℓ] appearing in the definition of GEC. For ease of presentation,
we assume that H is finite, i.e., |H| <∞, but our result can be directly extended to an infinite H using covering
number arguments (Wainwright, 2019; Jin et al., 2021a; Liu et al., 2022b; Jin et al., 2022).

Assumption 4.3 (Generalization). We assume that H is finite, i.e., |H| < +∞, and that with probability at
least 1− δ, for any episode k ∈ [K] and hypothesis f ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +B ·
(
H log(HK/δ) + log(|H|)

)
,

where B = B2
l for model-free hypothesis (see Assumption 3.1) and B = 1 for model-based hypothesis.

As we will show in Proposition 5.1 and Proposition 5.3, Assumption 4.3 holds for both the model-free and
model-based settings. Such a concentration style inequality is well known in the literature and similar analysis
is also adopted by Jin et al. (2021a); Chen et al. (2022b). With Assumptions 4.1, 4.2, and 4.3, we can present
our main theoretical result.

Theorem 4.4 (Online regret of MEX (Algorithm 1)). Under Assumptions 4.1, 4.2, and 4.3, by setting

η =

√
dGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B ·K
,

then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(K) ≲
√
dGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·B ·K,

with probability at least 1− δ. Here dGEC(·) is defined in Assumption 4.2.

Proof of Theorem 4.4. See Appendix A.1 for a detailed proof.
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By Theorem 4.4, the regret of Algorithm 1 scales with the square root of the number of episodes K and the
polynomials of the horizon H, the GEC dGEC(1/

√
K), and the log of the hypothesis class cardinality log |H|.

When the number of episodes K tends to infinity, the average regret Regret(K)/K vanishes, meaning that the
output policy of Algorithm 1 is approximately optimal. Thus Algorithm 1 is provably sample-efficient.

Besides, as we can see in Theorem 4.4 and its specifications in Section 5, MEX matches existing theoretical
results in the literature of online RL under general function approximations (Jiang et al., 2017b; Sun et al.,
2019; Du et al., 2021; Jin et al., 2021a; Dann et al., 2021; Agarwal and Zhang, 2022; Zhong et al., 2022). But
meanwhile, MEX does not require explicitly solving a constrained optimization problem within data-dependent
level-sets or performing a complex sampling procedure, as is required by previous theoretical algorithms. This
advantage makes MEX a principled approach with much easier practical implementations. We conduct deep RL
experiments for MEX in Section 7 to demonstrate its power in complicated online tasks.

Finally, thanks to the simple and flexible form of MEX, in Section 6, we further extend this framework and
its analysis to two-player zero-sum Markov games (MGs), for which we also extend the definition of generalized
eluder coefficient (GEC) to two-player zero-sum MGs. Moreover, a vast variety of tractable partially observable
problems also enjoy low GEC (Zhong et al., 2022), including regular PSR (Zhan et al., 2022), weakly revealing
POMDPs (Jin et al., 2020a), low rank POMDPs (Wang et al., 2022), and PO-bilinear class POMDPs (Uehara
et al., 2022). We believe that our proposed MEX framework can also be applied to solve these POMDPs.

5 Examples of MEX Framework

In this section, we specify Algorithm 1 to model-based and model-free hypothesis classes for various examples
of MDPs of low GEC (Assumption 4.2), including MDPs with low witness rank (Sun et al., 2019), MDPs with
low Bellman eluder dimension (Jin et al., 2021a), and MDPs of bilinear class (Du et al., 2021). Meanwhile,
we show that Assumption 4.3 (generalization) holds for both model-free and model-based settings. It is worth
highlighting that for both model-free and model-based hypotheses, we provide generalization guarantees in a
neat and unified manner, independent of specific MDP examples.

5.1 Model-free online RL in Markov Decision Processes

In this subsection, we specify Algorithm 1 for model-free hypothesis (Example 2.1). For a model-free hypothesis
class, we choose the discrepancy function ℓ as, given Dh = (xh, ah, rh, xh+1),

ℓf ′(f ;Dh) =
(
Exh+1∼Ph(·|xh,ah)[lf ′((fh, fh+1);Dh)]

)2
. (5.1)

where the function l : H×Hh ×Hh+1 × (S ×A×R×S) 7→ R satisfies Assumption 3.1. We specify the choice
of l in concrete examples of MDPs later.

In the following, we check and specify Assumptions 4.2 and 4.3 for model-free hypothesis classes.

Proposition 5.1 (Generalization: model-free RL). We assume that H is finite, i.e., |H| < +∞. Then under
Assumption 3.1, with probability at least 1− δ, for any k ∈ [K] and f ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +HB2
l log(HK/δ) +B2

l log(|H|),

where L and ℓ are defined in (3.3) and (5.1) respectively. Here Bl is specified in Assumption 3.1.

Proof of Proposition 5.1. See Appendix B.3 for detailed proof.

Proposition 5.1 specifies Assumption 4.3. For Assumption 4.2, we need structural assumptions on the MDP.
Given an MDP with GEC dGEC, we have the following corollary of Theorem 4.4.

Corollary 5.2 (Online regret of MEX: model-free hypothesis). Given an MDP with generalized eluder coefficient
dGEC(·) and a finite model-free hypothesis class H with f∗ ∈ H, under Assumption 3.1, setting

η =

√
dGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B2
l ·K

, (5.2)
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then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(T ) ≲ Bl ·
√
dGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·K, (5.3)

with probability at least 1− δ. Here Bl is specified in Assumption 3.1.

Corollary 5.2 can be directly specified to MDPs with low GEC, including MDPs with low Bellman eluder
dimension (Jin et al., 2021a) and MDPs of bilinear class (Du et al., 2021). We refer the readers to Appendix B.1
for a detailed discussion of these two examples.

5.2 Model-based online RL in Markov Decision Processes

In this part, we specify Algorithm 1 to model-based hypothesis (Example 2.2). For a model-based hypothesis
class, we choose the discrepancy function ℓ as the Hellinger distance. Given Dh = (xh, ah, rh, xh+1), we let

ℓf ′(f ;Dh) = DH(Ph,f (·|xh, ah)∥Ph,f∗(·|xh, ah)), (5.4)

where DH(·∥·) denotes the Hellinger distance. According to (5.4), the discrepancy function ℓ does not depend
on the input f ′ ∈ H. In the following, we check and specify Assumptions 4.2 and 4.3.

Proposition 5.3 (Generalization: model-based ). We assume that H is finite, i.e., |H| < +∞. Then with
probability at least 1− δ, for any k ∈ [K], f ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +H log(H/δ) + log(|H|),

where L and ℓ are defined in (3.5) and (5.4) respectively.

Proof of Proposition 5.3. See Appendix B.4 for detailed proof.

Proposition 5.3 specifies Assumption 4.3. For Assumption 4.2, we also need structural assumptions on the
MDP. Given an MDP with GEC dGEC, we have the following corollary of Theorem 4.4.

Corollary 5.4 (Online regret of MEX: model-based hypothesis). Given an MDP with generalized eluder coef-
ficient dGEC(·) and a finite model-based hypothesis class H with f∗ ∈ H, by setting

η =

√
dGEC(1/

√
HK)

(H log(H/δ) + log(|H|)) ·K
,

then the regret of Algorithm 1 after K episodes is upper bounded by, with probability at least 1− δ,

Regret(K) ≲
√
dGEC(1/

√
HK) · (H log(H/δ) + log(|H|)) ·K, (5.5)

Corollary 5.4 can be directly specified to MDPs having low GEC, including MDPs with low witness rank
(Sun et al., 2019). We refer the readers to Appendix B.2 for a detailed discussion of this example.

6 Extensions to Two-player Zero-sum Markov Games

In this section, we extend the definition of GEC to the two-player zero-sum MG setting and adapt MEX to this
setting in both model-free and model-based styles. Then we provide the theoretical guarantee for our proposed
algorithms and specify the results in concrete examples such as linear two-player zero-sum MG.
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6.1 Online Reinforcement Learning in Two-player Zero-sum Markov Games

Markov games (MGs) generalize the standard Markov decision process to the multi-agent setting. We consider
the episodic two-player zero-sum MG, which is denoted as (H,S,A,B,P, r). Here S is the state space shared
by both players, A and B are the action spaces of the two players (referred to as the max-player and the min-
player) respectively, H ∈ N+ denotes the length of each episode, P = {Ph}h∈[H] with Ph : S × A× B 7→ ∆(S)
the transition kernel of the next state given the current state and two actions from the two players at timestep
h, and r = {rh}h∈[H] with rh : S ×A× B 7→ [0, 1] the reward function at timestep h.

We consider online reinforcement learning in the episodic two-player zero-sum MG, where the two players
interact with the MG for K ∈ N+ episodes through the following protocal. Each episode k starts from an initial
state xk1 . At each timestep h, two players observe the current state xkh, take joint actions (akh, b

k
h) individually,

and observe the next state xkh+1 ∼ Ph(· |xkh, akh, bkh). The k-th episode ends after step H and then a new episode

starts. Without loss of generality, we assume each episode has a common fixed initial state xk1 = x1, which can
be easily generalized to having x1 sampled from a fixed but unknown distribution.

Policies and value functions. We consider Markovian policies for both the max-player and the min-player.
A Markovian policy of the max-player is denoted by µ = {µh : S 7→ ∆(A)}h∈[H]. Similarly, a Markovian policy
of the min-player is denoted by ν = {νh : X 7→ ∆(B)}h∈[H]. Given a joint policy π = (µ, ν), its state-value
function V µ,ν

h : S 7→ R+ and state-action value function Qµ,ν
h : S ×A× B 7→ R+ at timestep h are defined as

V µ,ν
h (x) := EP,(µ,ν)

[
H∑

h′=h

rh′(xh′ , ah′ , bh′)

∣∣∣∣∣xh = x

]
, (6.1)

Qµ,ν
h (x, a, b) := EP,(µ,ν)

[
H∑

h=h

rh′(xh′ , ah′ , bh′)

∣∣∣∣∣ (xh, ah, bh) = (x, a, b)

]
, (6.2)

where the expectations are taken over the randomness of the transition kernel and the policies. In the game, the
max-player wants to maximize the value functions, while the min-layer aims at minimizing the value functions.

Best response, Nash equilibrium, and Bellman equations. Given a max-player’s policy µ, the best
response policy of the min-player, denoted by ν†(µ), is the policy that minimizes the total rewards given that
the max-player uses µ. According to this definition, and for notational simplicity, we denote

V µ,†
h (x) := V

µ,ν†(µ)
h (x) = inf

ν
V µ,ν
h (x),

Qµ,†
h (x, a, b) := Q

µ,ν†(µ)
h (x, a, b) = inf

ν
Qµ,ν

h (x, a, b), (6.3)

for any (x, a, b, h) ∈ S × A × B × [H]. Similarly, given a min-player’s policy ν, there is a best response policy
µ†(ν) for the max-player that maximizes the total rewards given ν. According to the definition, we denote

V †,ν
h (x) := V

µ†(ν),ν
h (x) = sup

µ
V µ,ν
h (x),

Q†,ν
h (x, a, b) := Q

µ†(ν),ν
h (x, a, b) = sup

µ
Qµ,ν

h (x, a, b), (6.4)

for any (x, a, b, h) ∈ S ×A× B × [H]. Furthermore, there exists a Nash equilibrium (NE) joint policy (µ∗, ν∗)
(Filar and Vrieze, 2012) such that both players are optimal against their best responses. That is,

V µ∗,†
h (x) = sup

µ
V µ,†
h (x), V †,ν∗

h (x) = inf
ν
V †,ν
h (x), (6.5)

for any (x, h) ∈ S × [H]. For the NE joint policy, we have the following minimax equation,

sup
µ

inf
ν
V µ,ν
h (x) = V µ∗,ν∗

h (x) = inf
ν
sup
µ
V µ,ν
h (x). (6.6)
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for any (x, h) ∈ S× [H]. This shows that: i) the for two-player zero-sum MG, the sup and the inf exchanges; ii)
the NE policy has a unique state-value (state-action value) function, which we denote as V ∗ andQ∗ respectively.
Finally, we introduce two sets of Bellman equations for best response value functions and NE value functions.
In specific, for the min-player’s best response value functions given max-player policy µ, i.e., (6.3), we have
the following Bellman equation,3

Qµ,†
h (x, a, b) = (T µ

h Q
µ,†
h+1)(x, a, b) := rh(x, a, b) + Ex′∼Ph(·|x,a,b)

[
inf
νh+1

D(µh+1,νh+1)Q
µ,†
h+1(x

′)

]
, (6.7)

for any (x, a, b, h) ∈ S × A × B × [H]. We name T µ
h as the min-player best response Bellman operator given

max-player policy µ, and we define

Eµ
h (Qh, Qh+1;x, a, b) := Qh(x, a, b)− T µ

h Qh+1(x, a, b), (6.8)

as the min-player best response Bellman residual given max-player policy µ at timestep h of any functions
(Qh, Qh+1). Also, for the NE value functions, i.e., (6.1), we also have the following NE Bellman equation,

Q∗
h(x, a, b) = (T NE

h Q∗
h+1)(x, a, b) := rh(x, a, b) + Ex′∼Ph(·|x,a,b)

[
sup
µh+1

inf
νh+1

D(µh+1,νh+1)Q
∗
h+1(x

′)

]
, (6.9)

for any (x, a, b, h) ∈ S ×A× B × [H]. We call T NE
h the NE Bellman operator, and we define

ENE
h (Qh, Qh+1;x, a, b) := Qh(x, a, b)− T NE

h Qh+1(x, a, b), (6.10)

as the NE Bellman residual at timestep h of any functions (Qh, Qh+1).

Performance metric. We say a max-player’s policy µ is ϵ-close to Nash equilibrium if V ∗(x1)−V µ,†(x1) < ϵ.
The goal of this section is to find such a max-player policy. The corresponding regret after K episodes is,

RegretMG(K) =

K∑
k=1

V ∗
1 (x1)− V µk,†

1 (x1), (6.11)

where µk is the policy used by the max-player for the k-th episode. Such a problem setting is also considered by
Jin et al. (2022); Huang et al. (2021); Xiong et al. (2022). Actually, the roles of two players can be exchanged,
so that the goal turns to learning a min-player policy ν which is ϵ-close to the Nash equilibrium.

6.2 Function Approximation: Model-Free and Model-Based Hypothesis

Parallel to the MDP setting, we study two-player zero-sum MGs in the context of general function approxima-
tions. In specific, we assume access to an abstract hypothesis class H = H1 × · · ·×HH , which can be specified
to model-based and model-free settings, respectively. Also, we denote Π = M×N with M = M1 × · · · ×MH

and N = N1 × · · · ×NH as the space of Markovian joint policies.
The following two examples show how to specify H for model-free and model-based settings.

Example 6.1 (Model-free hypothesis class: two-player zero-sum Markov game). For the model-free setting,
H contains approximators of the state-action value functions of the MG, i.e., Hh ⊆ {fh : S × A × B 7→ R}.
Specifically, for any f = (f1, · · · , fH) ∈ H:

1. we denote the corresponding state-action value function Qf = {Qh,f}h∈[H] with Qh,f = fh;
2. we denote the corresponding NE state-value function Vf = {Vh,f}h∈[H] with

Vh,f (·) = sup
µh∈Mh

inf
νh∈Nh

D(µh,νh)Qh,f (·),

and we denote the corresponding NE max-player policy by µf = {µh,f}h∈[H] with

µh,f (·) = argsup
µh∈Mh

inf
νh∈Nh

D(µh,νh)Qh,f (·).

3For simplicity, we define D(µh,νh) := Ea∼µh(·|x),b∼νh(·|x)[Q(x, a, b)] for any µh, νh, and function Q.
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Algorithm 2 Maximize to Explore for two-player zero-sum Markov Game (MEX-MG)

1: Input: Hypothesis class H, parameter η > 0.
2: for k = 1, · · · ,K do
3: Solve fk ∈ H via

fk = argsup
f∈H

{
V1,f (x1)− η ·

H∑
h=1

Lk−1
h (f)

}
. (6.12)

4: Set the max-player policy as µk = µfk .
5: Solve gk ∈ H via

gk = argsup
g∈H

{
−V µk,†

1,g (x1)− η ·
H∑

h=1

Lk−1
h,µk(g)

}
. (6.13)

6: Set the min-player policy as νk = νgk,µk .
7: Execute πk = (µk, νk) to collect data Dk = {Dk

h}h∈[H] with Dk
h = (xkh, a

k
h, b

k
h, r

k
h, x

k
h+1).

8: end for

3. given a policy of the max-player µ ∈ M, we define V µ,†
f = {V µ,†

h,f }h∈[H] as the state-value function induced

by Qf , µ and its best response, i.e., V µ,†
h,f (·) = infνh∈Nh

D(µh,νh)Qh,f (·), and we denote the corresponding
best response min-player policy as νf,µ = {νh,f,µ}h∈[H], i.e., νh,f = arginfνh∈Nh

D(µh,νh)Qh,f (·).
4. we denote the NE state-action value function under the true model, i.e., Q∗, by f∗.

Example 6.2 (Model-based hypothesis class: two-player zero-sum Markov game). For the model-based setting,
H contains approximators of the transition kernel of the MG, for which we denote f = Pf = (P1,f , · · · ,PH,f ) ∈
H. For any (f,π) ∈ H ×Π with π = (µ, ν):

1. we denote V µ,ν
f = {V µ,ν

h,f }h∈[H] as the state-value function induced by model Pf and joint policy (µ, ν).
2. we denote Vf = {Vh,f}h=∈[H] as the NE state-value function induced by model Pf , and we denote the

corresponding NE max-player policy as µf = {µh,f}h∈[H].

3. given a policy of the max-player µ ∈ M, we define V µ,†
f = {V µ,†

h,f }h∈[H] as the state-value function induced

by model Pf , µ and its best response, i.e., V µ,†
h,f (·) = infν∈N V µ,ν

h,f (·), and we denote the corresponding best

response min-player policy as νf,µ = {νh,f,µ}h∈[H], i.e., νf,µ = arginfν∈N V µ,ν
h,f (·).

4. we denote the true model P of the two-player zero-sum MG as f∗.

6.3 Algorithm Framework: Maximize to Explore (MEX-MG)

In this section, we extend the Maximize to Explore framework (MEX, Algorithm 1) proposed in Section 3 to the
two-player zero-sum MG setting, resulting in MEX-MG (Algorithm 2). MEX-MG controls the max-player and the
min-player in a centralized manner. The min-player is aimed at assisting the max-player to achieve low regret.
This kind of self-play algorithm framework has received considerable attention recently in theoretical study of
two-player zero-sum MGs (Jin et al., 2022; Huang et al., 2021; Xiong et al., 2022).

We first give a generic algorithm framework and then instantiate it to model-free (Example 6.1) and model-
based (Example 6.2) hypotheses respectively.

6.3.1 Generic algorithm

MEX-MG leverages the asymmetric structure between the max-player and min-player to achieve sample-efficient
learning. In specific, it picks two different hypotheses for the two players respectively, so that the max-player
is aimed at approximating the NE max-player policy and the min-player is aimed at approximating the best
response of the max-player, assisting its regret minimization.
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Max-player. At each episode k ∈ [K], MEX-MG first estimates a hypothesis fk ∈ H for the max-player using
historical data {Ds}k−1

s=1 by maximizing objective (6.12). Parallel to MEX, to achieve the goal of exploiting
history knowledge while encouraging exploration, the composite objective (6.12) sums: (a) the negative loss
−Lk−1

h (f) induced by the hypothesis f ; (b) the Nash equilibrium value associated with the current hypothesis,
i.e., V1,f . MEX-MG balances exploration and exploitation via a tuning parameter η > 0. With the hypothesis
fk, MEX-MG sets the max-player’s policy µk as the NE max-player policy with respect to fk, i.e., µfk .

Min-player. After obtaining the max-player policy µk, MEX-MG goes to estimate another hypothesis for the
min-player in order to approximate the best response of the max-player. In specific, MEX-MG estimates gk ∈ H
using historical data {Ds}k−1

s=1 by maximizing objective (6.13), which also sums two objectives: (a) the negative
loss −Lk−1

h,µk(g) induced by the hypothesis g. Here the loss function depends on µk since we aim to approximate

the best response of µk; (b) the negative best response min-player value associated with the current hypothesis

g and µk, i.e., −V µk,†
1,g . The negative sign is due to the goal of min-player, i.e., minimization of the total rewards.

With gk, MEX-MG sets the min-player’s policy νk as the best response policy of µk under gk, i.e., νgk,µk .

Data collection. Finally, the two agents execute the joint policy πk = (µk, νk) to collect new data Dk =
{(xkh, akh, bkh, rkh, xkh+1)}Hh=1 and update their loss functions L(·). The choice of the loss functions varies between
model-free and model-based hypotheses, which we specify in the following.

6.3.2 Model-free algorithm

For model-free hypothesis (Example 6.1), the composite objectives (6.12) and (6.13) becomes

fk = argsup
f∈H

{
sup

µ1∈M1

inf
ν1∈N1

D(µ1,ν1)Q1,f (x1)− η ·
H∑

h=1

Lk−1
h (f)

}
, (6.14)

gk = argsup
g∈H

{
− inf

ν1∈N1

D(µk
1 ,ν1)Q1,g(x1)− η ·

H∑
h=1

Lk−1
h,µk(g)

}
. (6.15)

In the model-free algorithm, we choose the loss functions as empirical estimates of squared Bellman residuals.
For the max-player who wants to approximate the NE max-player policy, we choose the loss function Lk

h(f) as
an estimation of the squared NE Bellman residual, given by

Lk
h(f) =

k∑
s=1

(
Qh,f (x

s
h, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
− inf

f ′
h∈Hh

k∑
s=1

(
Qh,f ′(xsh, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
. (6.16)

For the min-player who aims at approximating the best response policy of µk, we set the loss function Lk
h,µ(g)

as an estimation of the squared best-response Bellman residual given max-player policy µ,

Lk
h,µ(g) =

k∑
s=1

(
Qh,g(x

s
h, a

s
h, b

s
h)− rsh − V µ,†

h+1,g(x
s
h+1)

)2
− inf

g′
h∈Hh

k∑
s=1

(
Qh,g′(xsh, a

s
h, b

s
h)− rsh − V µ,†

h+1,g(x
s
h+1)

)2
. (6.17)

We remark that the subtracted infimum term in both (6.16) and (6.17) is for handling the variance terms in
the estimation to achieve a fast theoretical rate, as we do for MEX with model-free hypothesis in Section 3.
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6.3.3 Model-based algorithm.

For model-based hypothesis (Example 6.2), the composite objectives (6.12) and (6.13) becomes

fk = argsup
f∈H

{
sup
µ∈M

inf
ν∈N

V µ,ν
1,Pf

(x1)− η ·
H∑

h=1

Lk−1
h (f)

}
, (6.18)

gk = argsup
g∈H

{
− inf

ν∈N
V µk,ν
1,Pg

(x1)− η ·
H∑

h=1

Lk−1
h,µk(g)

}
, (6.19)

which can be understood as a joint optimization over model Pf and the joint policy policy π = (µ, ν). In the
model-based algorithm, we choose the loss function Lk

h(f) as the negative log-likelihood loss,

Lk
h(f) = −

k∑
s=1

logPh,f (x
s
h+1|xsh, ash, bsh). (6.20)

Meanwhile, we choose the loss function Lk
h,µ(g) = Lk

h(g), i.e., (6.20), regardless of the max-player policy µ.

But we remark that despite Lk
h = Lk

h,µ, f
k and gk are still different since the exploitation component in (6.18)

and (6.19) are not the same due to the different targets of the max-player and the min-player.

6.4 Regret Analysis for MEX-MG Framework

In this section, we establish the regret of the MEX-MG framework (Algorithm 2). Specifically, we give an upper
bound of its regret which holds for both model-free (Example 6.1) and model-based (Example 6.2) settings.
We first present several key assumptions needed for the main result.

We first assume that the hypothesis class H is well-specified, containing certain true hypotheses.

Assumption 6.3 (Realizablity). We make the following realizability assumptions for the model-free and model-
based hypotheses respectively:

• For model-free hypothesis (Example 6.1), we assume that the true Nash equilibrium value f∗ ∈ H. More-
over, for any f ∈ F , it holds that Qµf ,† ∈ H.

• For model-based hypothesis (Example 6.2), we assume that the true transition f∗ ∈ H.

Also, we make the following completeness and boundedness assumption on H.

Assumption 6.4 (Completeness and Boundedness). For model-free hypothesis (Example 6.1), we assume that
for any f, g ∈ H, it holds that T µf

h gh ∈ Hh, for any timestep h ∈ [H]. Also, we assume that there exists Bf ≥ 1
such that for any fh ∈ Hh, it holds that fh(x, a, b) ∈ [0, Bf ] for any (x, a, b, h) ∈ S ×A× B × [H].

Assumptions 6.3 and 6.4 are standard assumptions in studying two-player zero-sum MGs (Jin et al., 2022;
Huang et al., 2021; Xiong et al., 2022). Moreover, we make a structural assumption on the underlying MG
to ensure sample-efficient online RL. Inspired by the single-agent analysis, we require that the MG has a low
Two-player Generalized Eluder Coefficient (TGEC), which generalizes the GEC defined in Section 4.
We provide specific examples of MGs with low TGEC, both model-free and model-based, in Section 6.5.

To define TGEC, we introduce two discrepancy functions ℓ and ℓµ,

ℓf ′(f ; ξh) : H×H× (S ×A× R× S) 7→ R,
ℓf ′,µ(f ; ξh) : H×N×H× (S ×A× R× S) 7→ R,

which characterizes the error incurred by a hypothesis f ∈ H on data ξh = (xh, ah, bh, rh, xh+1). Intuitively,
ℓ aims at characterizing the NE Bellman residual (6.10), while ℓµ aims at characterizing the min-player best
response Bellman residual given max-player policy µ (6.8). Specific choices of ℓ are given in Section 6.5 for
concrete model-free and model-based examples.
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Assumption 6.5 (Low Two-Player Generalized Eluder Coefficient (TGEC)). We assume that given an ϵ > 0,
there exists a finite d(ϵ) ∈ R+, such that for any sequence of hypotheses {(fk, gk)}k∈[K] ⊂ H and policies

{πk = (µfk , νgk,µ
fk
)}k∈[K] ⊂ Π, it holds that

K∑
k=1

V1,fk(x1)− V πk

1 (x1) ≤ inf
ζ>0

{
ζ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓfs(fk; ξh)] +
d(ϵ)

2ζ
+
√
d(ϵ)HK + ϵHK

}
,

and it also holds that

K∑
k=1

V πk

1 (x1)− V µk,†
1,gk (x1) ≤ inf

ζ>0

{
ζ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓgs,µk(gk; ξh)] +
d(ϵ)

2ζ
+
√
d(ϵ)HK + ϵHK

}
,

where µk = µfk . We denote the smallest d(ϵ) ∈ R+ satisfying this condition as dTGEC(ϵ).

Finally, we make a concentration-style assumption on loss functions, parallel to Assumption 4.3 for MDPs.
For ease of presentation, we also assume that the hypothesis class H is finite.

Assumption 6.6 (Generalization). We assume that H is finite, i.e., |H| < +∞, and that with probability at
least 1− δ, for any episode k ∈ [K] and hypotheses f, g ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πk [ℓfs(f ; ξh)] +B ·
(
H log(HK/δ) + log(|H|)

)
.

and it also holds that, with ⋆ = Qµk,† for model-free hypothesis and ⋆ = f∗ for model-based hypothesis,

H∑
h=1

Lk−1
h,µk(⋆)− Lk−1

h,µk(g) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πk [ℓgs,µk(g; ξh)] +B ·
(
H log(HK/δ) + log(|H|)

)
,

Here B = B2
f for model-free hypothesis (see Assumption 6.4) and B = 1 for model-based hypothesis.

As we show in Proposition 6.8 and Proposition 6.13, Assumption 6.6 holds for both model-free and model-
based settings. With Assumptions 6.3, 6.4 (model-free only), 6.5, and 6.6, we can present our main theoretical
result.

Theorem 6.7 (Online regret of MEX-MG (Algorithm 2)). Under Assumptions 6.3, 6.4 (model-free only), 6.5,
and 6.6, by setting

η =

√
dTGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B ·K
,

the regret of Algorithm 2 after K episodes is upper bounded by

Regret(K) ≲
√
dTGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·B ·K,

with probability at least 1− δ. Here dTGEC(·) is given by Assumption 6.5.

Proof of Theorem 6.7. See Appendix A.2 for detailed proof.

6.5 Examples of MEX-MG Framework

6.5.1 Model-free online RL in Two-player Zero-sum Markov Games

In this subsection, we specify MEX-MG (Algorithm 2) for model-free hypothesis class (Example 6.1). In specific,
we choose the discrepancy functions ℓ and ℓµ as, given ξh = (xh, ah, bh, rh, xh+1),

ℓf ′(f ; ξh) =
(
Qh,f (xh, ah, bh)− rh − Exh+1∼Ph(·|xh,ah,bh)[Vh+1,f (xh+1)]

)2
, (6.21)

ℓf ′,µ(g; ξh) =
(
Qh,g(xh, ah, bh)− rh − Exh+1∼Ph(·|xh,ah,bh)[V

µ,†
h+1,g(xh+1)]

)2
. (6.22)

By (6.21) and (6.22), both ℓf ′ and ℓf ′,µ do not depend on the input f ′. In the following, we check and specify
Assumptions 6.5 and 6.6 in Section 6.4 for model-free hypothesis class.
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Proposition 6.8 (Generalization: model-free RL). We assume that H is finite, i.e., |H| < +∞. Then with
probability at least 1− δ, for any k ∈ [K] and f, g ∈ H, it holds simultaneously that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πk [ℓfs(f ; ξh)] +HB2
f log(HK/δ) +B2

f log(|H|),

H∑
h=1

Lk−1
h,µk(Q

µk,†)− Lk−1
h,µk(g) ≲ −

H∑
h=1

k−1∑
s=1

Eξh∼πk [ℓgs,µk(g; ξh)] +HB2
f log(HK/δ) +B2

f log(|H|),

where L, Lµ, ℓ, and ℓµ are defined in (6.15), (6.16), (6.21), and (6.22), respectively.

Proof of Proposition 6.8. See Appendix C.3 for a detailed proof.

Proposition 6.8 specifies Assumption 6.6 for abstract model-free hypothesis. Now given a two-player zero-
sum MG with TGEC dTGEC, we have the following corollary of Theorem 6.7.

Corollary 6.9 (Online regret of MEX-MG: model-free hypothesis). Given a two-player zero-sum MG with two-
player generalized eluder coefficient dTGEC(·) and a finite model-free hypothesis class H satisfying Assumptions
6.3 and 6.4, by setting

η =

√
dTGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B2
f ·K

, (6.23)

then the regret of Algorithm 2 after K episodes is upper bounded by

Regret(T ) ≲ Bf ·
√
dTGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·K, (6.24)

with probability at least 1− δ. Here B is specified in Assumption 6.4.

Linear two-player zero-sum Markov game. Next, we introduce the linear two-player zero-sum MG (Xie
et al., 2020) as a concrete model-free example, for which we can explicitly specify its TGEC. Linear MG is a
natural extension of linear MDPs (Jin et al., 2020b) to the two-player zero-sum MG setting, whose reward and
transition kernels are modeled by linear functions.

Definition 6.10 (Linear two-player zero-sum Markov game). A d-dimensional two-player zero-sum linear
Markov game satisfies that rh(x, a, b) = ϕh(x, a, b)

⊤αh and Ph(x
′ |x, a, b) = ϕh(x, a, b)

⊤ψ⋆
h(x

′) for some known
feature mapping ϕh(x, a, b) ∈ Rd and some unknown vector αh ∈ Rd and some unknown function ψh(x

′) ∈ Rd

satisfying ∥ϕh(x, a, b)∥2 ≤ 1 and max{∥αh∥2, ∥ψ⋆
h(x

′)∥2} ≤
√
d for any (x, a, b, x′, h) ∈ S ×A× B × S × [H].

Linear two-player zero-sum MG covers the tabular two-player zero-sum MG as a special case. For a linear
two-player zero-sum MG, we choose the model-free hypothesis class as, for each h ∈ [H],

Hh =
{
ϕh(·, ·, ·)⊤θh : ∥θh∥2 ≤ (H + 1− h)

√
d
}
. (6.25)

The following proposition gives the TGEC of a linear two-player zero-sum MG with hypothesis class (6.25).

Proposition 6.11 (TGEC of linear two-player zero-sum MG). For a linear two-player zero-sum MG, with
model-free hypothesis (6.25), it holds that

dTGEC(1/
√
HK) ≲ d log(HK), log

(
N (H, 1/K, ∥ · ∥∞)

)
≲ dH log(dK), (6.26)

where N (H, 1/K, ∥ · ∥∞) denotes the 1/K-covering number of H under ∥ · ∥∞-norm.

Proof of Proposition 6.11. See Appendix C.1 for a detailed proof.

As proved by Huang et al. (2021), a linear two-player zero-sum MG with model-free hypothesis class (6.25)
also satisfies the realizability and completeness assumptions (Assumptions 6.3 and 6.4, with Bf = H). Thus
we can specify Theorem 6.7 for linear two-player zero-sum MGs as follows.
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Corollary 6.12 (Online regret of MEX-MG: linear two-player zero-sum MG). By setting η = Θ̃(
√

1/H3K), the
regret of Algorithm 2 for linear two-player zero-sum MG after K episodes is upper bounded by

RegretMG(K) ≲ dH3/2K1/2 log(HKd/δ),

with probability at least 1− δ, where d is the dimension of the linear two-player zero-sum MG.

Proof of Corollary 6.12. Using Corollary 6.9, Proposition 6.11, and a covering number argument.

6.5.2 Model-based online RL in Two-player Zero-sum Markov Games

In this subsection, we specify Algorithm 2 for model-based hypothesis class H (Example 6.2). In specific, we
choose the discrepancy function ℓ as the Hellinger distance. Given data ξh = (xh, ah, bh, xh+1), we let

ℓf ′(f ; ξh) = ℓf ′,µ(f ; ξh) = DH(Ph,f (·|xh, ah, bh)∥Ph,f∗(·|xh, ah, bh)), (6.27)

where DH(·∥·) denotes the Hellinger distance. We note that due to (6.27), the discrepancy function ℓ does not
depend on the input f ′ ∈ H and the max-player policy µ. In the following, we check and specify Assumptions
6.5 and 6.6 in Section 6.4 for model-based hypothesis classes.

Proposition 6.13 (Generalization: model-based RL). We assume that H is finite, i.e., |H| < +∞. Then
with probability at least 1− δ, for any k ∈ [K], f ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πk [ℓfs(f ; ξh)] +H log(H/δ) + log(|H|),

where L and ℓ are defined in (6.20) and (6.27) respectively.

Proof of Proposition 6.13. This proposition follows from the same proof of Proposition 5.3.

Since Lk
h = Lk

h,µ and ℓf = ℓf,µ, Proposition 6.13 means that Assumption 6.6 holds. Now given a two-player
zero-sum MG with TGEC dTGEC, we have the following corollary of Theorem 6.7.

Corollary 6.14 (Online regret of MEX-MG: model-based hypothesis). Given a two-player zero-sum MG with
two-player generalized eluder coefficient dTGEC(·) and a finite model-based hypothesis class H with f∗ ∈ H, by
setting

η =

√
dTGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·K
, (6.28)

then the regret of Algorithm 2 after K episodes is upper bounded by

Regret(T ) ≲
√
dTGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·K, (6.29)

with probability at least 1− δ.

Linear mixture two-player zero-sum Markov game. Next, we introduce the linear mixture two-player
zero-sum MG as a concrete model-based example, for which we can explicitly specify its TGEC. Linear mixture
MG is a natural extension of linear mixture MDPs (Ayoub et al., 2020; Modi et al., 2020; Cai et al., 2020) to
the two-player zero-sum MG setting, whose transition kernels are modeled by linear kernels. But just as the
single-agent setting, the linear mixture MG and the linear MG (Definition 6.10) do not cover each other as
special cases (Cai et al., 2020).

Definition 6.15 (Linear mixture two-player zero-sum Markov game). A d-dimensional two-player zero-sum
linear mixture Markov game satisfies that Ph(x

′ |x, a, b) = ϕh(x, a, b, x
′)⊤θ⋆h for some known feature mapping

ϕh(x, a, b, x
′) ∈ Rd and some unknown vector θ⋆h ∈ Rd satisfying ∥ϕh(x, a, b, x′)∥2 ≤ 1 and ∥θh∥2 ≤

√
d for any

(x, a, b, x′, h) ∈ S ×A× B × S × [H].
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Linear mixture two-player zero-sum MG also covers the tabular two-player zero-sum MG as a special case.
For a linear mixture two-player zero-sum MG, we choose the model-based hypothesis class as, for each h,

Hh =
{
ϕh(·, ·, ·, ·)⊤θh : ∥θh∥2 ≤

√
d
}
. (6.30)

The following proposition gives the TGEC of a linear mixture two-player zero-sum MG.

Proposition 6.16 (TGEC of linear mixture two-player zero-sum MG). For a linear mixture two-player zero-
sum MG, with model-free hypothesis (6.25), it holds that

dTGEC(1/
√
HK) ≲ dH2 log(HK), log

(
N (H, 1/K, ∥ · ∥∞)

)
≲ dH log(dK). (6.31)

where N (H, 1/K, ∥ · ∥∞) denotes the 1/K-covering number of H under ∥ · ∥∞-norm.

Proof of Proposition 6.16. See Appendix C.2 for a detailed proof.

Then we can specify Theorem 6.7 for linear mixture two-player zero-sum MGs as follows.

Corollary 6.17 (Online regret of MEX-MG: linear mixture two-player zero-sumMG). By setting η = Θ̃(
√
H/K),

the regret of Algorithm 2 for linear mixture two-player zero-sum MG after K episodes is upper bounded by

RegretMG(K) ≲ dH3/2K1/2 log(HKd/δ),

with probability at least 1− δ, where d is the dimension of the linear mixture two-player zero-sum MG.

Proof of Corollary 6.17. Using Corollary 6.14, Proposition 6.16, and a covering number argument.

7 Experiments

In this section, we propose practical versions of MEX in both model-free and model-based fashion.
We aim to answer the following two questions:
1. What are the practical approaches to implementing MEX in both model-based (MEX-MB) and model-free

(MEX-MF) settings via deep RL methods?
2. Can MEX handle challenging exploration tasks, especially those that involve sparse reward scenarios?

7.1 Experiment Setups

We evaluate the effectiveness of MEX by assessing its performance in both standard gym locomotion tasks and
sparse reward locomotion and navigation tasks within the MuJoCo (Todorov et al., 2012) environment. For
sparse reward tasks, we select cheetah-vel, walker-vel, hopper-vel, ant-vel, and ant-goal adapted from
Yu et al. (2020), where the agent receives a reward only when it successfully attains the desired velocity or
goal. To adapt to deep RL settings, we consider infinite-horizon γ-discounted MDPs and corresponding MEX

variants. We report the results averaged over five random seeds. In the sparse-reward tasks, the agent only
receives a reward when it achieves the desired velocity or position. Regarding the model-based sparse-reward
experiments, we assign a target value of 1 to the vel parameter for the walker-vel task and 1.5 for the
hopper-vel, cheetah-vel, ant-vel tasks. For the model-free sparse-reward experiments, we set the target
vel to 3 for the hopper-vel, walker-vel, cheetah-vel tasks, and the target goal to (2, 0) for ant-goal task.

7.2 Implementation Details

Model-free algorithm. For the model-free variant MEX-MF, we observe from (3.2) that adding a maximiza-
tion bias term to the standard TD error is sufficient for provably efficient exploration. However, this may lead
to instabilities as the bias term only involves the state-action value function of the current policy, and thus
the policy may be ever-changing. To address this issue, we adopt a similar treatment as in CQL (Kumar et al.,
2020) by subtracting a baseline state-action value from random policy µ = Unif(A) and obtain the following
objective,

min
θ

max
π

ED

[(
r + γQθ(x

′, a′)−Qθ(x, a)
)2]− η′ · ED

[
Ea∼πQθ(x, a)− Ea∼µQθ(x, a)

]
. (7.1)
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We update θ and π in objective (7.1) iteratively in an actor-critic fashion. To stabilize training, we adopt a sim-
ilar entropy regularization H(µ) over µ as in CQL Kumar et al. (2020). By incorporating such a regularization,
we obtain the following soft constrained variant of MEX-MF, i.e.

min
θ

max
π

Eβ

[(
r + γQθ(x

′, a′)−Qθ(x, a)
)2]− η′ · Eβ

[
Ea∼πQθ(x, a)− log

∑
a∈A

exp (Qθ(x, a))

]
.

Model-based algorithm. For the model-based variant MEX-MB, we use the following objective:

max
ϕ

max
π

E(x,a,r,x′)∼D [logPϕ(x
′, r |x, a)] + η′ · Ex∼σ

[
V π
Pϕ
(x)
]
, (7.2)

where we denote by σ(·) the initial state distribution, D the replay buffer, and η′ corresponds to 1/η in the
previous theory sections. We leverage the score function to obtain the model value gradient ∇ϕV

π
Pϕ

in a similar

way to likelihood ratio policy gradient (Sutton et al., 1999), with the gradient of action log-likelihood replaced
by the gradient of state and reward log-likelihood in the model. Specifically,

∇ϕ Ex∼σ

[
V π
Pϕ
(x)
]
= Eτπ

ϕ

[(
r + γV π

Pϕ
(x′)−Qπ

Pϕ
(x, a)

)
· ∇ϕ logPϕ(x

′, r |x, a)
]
, (7.3)

where τπϕ is the trajectory under policy π and transition Pϕ, starting from σ. We refer the readers to previous
works (Rigter et al., 2022; Wu et al., 2022) for a derivation of (7.3). The model ϕ and policy π in (7.2) are
updated iteratively in a Dyna (Sutton, 1990) style, where model-free policy updates are performed on model-
generated data. Particularly, we adopt SAC (Haarnoja et al., 2018b) to update the policy π and estimate the
value Qπ

Pϕ
using the model data generated by the model Pϕ. We also follow Rigter et al. (2022) to update the

model using mini-batches from D and normalize the advantage r + γV π
Pϕ

− Qπ
Pϕ

within each mini-batch. We
refer the readers to Appendix E.2 for more implementation details of MEX-MB.

7.3 Experimental Results

We report the performance of MEX-MF and MEX-MB in Figures 1 and 2, respectively.

Results for MEX-MF. We compare MEX-MF with the model-free baseline TD3 (Fujimoto et al., 2018). We
observe that TD3 fails in many sparse reward tasks, while MEX-MF can significantly boost the performance. In
standard MuJoCo gym tasks, MEX-MF also steadily outperforms TD3 with faster convergence and higher returns.
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Figure 1: Model-free MEX-MF in sparse and standard MuJoCo locomotion tasks.

Results for MEX-MB. We compare MEX-MB with MBPO (Janner et al., 2019), where our method differs from
MBPO only in the inclusion of the value gradient in (7.3) during model updates. We find that MEX-MB offers an
easy implementation with minimal computational overhead and yet remains highly effective across sparse and
standard MuJoCo tasks. Notably, in the sparse reward settings, MEX-MB excels at achieving the goal velocity
and outperforms MBPO by a stable margin. In standard gym tasks, MEX-MB showcases greater sample efficiency
in challenging high-dimensional tasks with higher asymptotic returns.

8 Conclusions

In this paper, we propose a novel online RL algorithm frameworkMaximize to Explore (MEX), aimed at striking a
balance between exploration and exploitation in online learning scenarios. MEX is provably sample-efficient with
general function approximations and is easy to implement. Theoretically, we prove that under mild structural
assumptions (low generalized eluder coefficient (GEC)), MEX achieves Õ(

√
K)-online regret for Markov decision

processes. We further extend the definition of GEC and the MEX framework to two-player zero-sum Markov
games and also prove the Õ(

√
K)-online regret. In practice, we adapt MEX to deep RL methods in both model-

based and model-free styles and apply them to sparse-reward MuJoCo environments, outperforming baselines
significantly. We hope that our work can shed light on future research of designing both statistically efficient
and practically effective RL algorithms with powerful function approximations.
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Figure 2: Model-based MEX-MB in sparse and standard MuJoCo locomotion tasks.
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A Proof of Main Theoretical Results

A.1 Proof of Theorem 4.4

Proof of Theorem 4.4. Consider the following decomposition of the regret,

Regret(K) =

K∑
k=1

V ∗
1 (x1)− V

π
fk

1 (x1)

=

K∑
k=1

V ∗
1 (x1)− V1,fk(x1)︸ ︷︷ ︸
Term (i)

+

K∑
k=1

V1,fk(x1)− V
π
fk

1 (x1)︸ ︷︷ ︸
Term (ii)

(A.1)

Term (i). Note that by our definition in both Example 2.2 and 2.1, we have that V ∗
1 = V1,f∗ . Thus we can

rewrite the term (i) as

Term (i) =

K∑
k=1

V1,f∗(x1)− V1,fk(x1). (A.2)

Then by our choice of fk in (3.1) and the fact that f∗ ∈ H, we have that for each k ∈ [K],

V1,f∗(x1)− η

H∑
h=1

Lk−1
h (f∗)(x1) ≤ V1,fk(x1)− η

H∑
h=1

Lk−1
h (fk)(x1) (A.3)

By combining (A.2) and (A.3), we can derive that

Term (i) ≤ η

K∑
k=1

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (fk) (A.4)

Now by applying Assumption 4.3 to (A.4), we can further derive that with probability at least 1− δ,

Term (i) ≤ −c(i) · η
K∑

k=1

k−1∑
s=1

H∑
h=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] + c(i) · ηBK
(
H log(HK/δ) + log(|H|)

)
. (A.5)

where c(i) > 0 is some absolute constant (recall the definition of ≲).

Term (ii). For term (ii) of (A.2), we apply Assumption 4.2 and obtain that, for any ϵ > 0,

Term (ii) ≤ inf
µ>0

{
µ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] +
dGEC(ϵ)

2µ
+
√
dGEC(ϵ)HK + ϵHK

}
.

By taking µ/2 = c(i) · η, we can further derive that,

Term (ii) ≤ c(i) · η
H∑

h=1

K∑
k=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] +
dGEC(ϵ)

4c(i)η
+
√
dGEC(ϵ)HK + ϵHK. (A.6)
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Combining Term (i) and Term (ii). Now by combining (A.5) and (A.6), we can obtain that with prob-
ability at least 1− δ,

Regret(T ) = Term (i) + Term (ii)

≤ −c(i) · η
K∑

k=1

k−1∑
s=1

H∑
h=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] + c(i) · ηBK
(
H log(HK/δ) + log(|H|)

)
,

+ c(i) · η
H∑

h=1

K∑
k=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)] +
dGEC(ϵ)

4c(i)η
+
√
dGEC(ϵ)HK + ϵHK

= c(i) · ηBK
(
H log(HK/δ) + log(|H|)

)
+
dGEC(ϵ)

4c(i)η
+
√
dGEC(ϵ)HK + ϵHK. (A.7)

By taking ϵ = 1/
√
HK, η =

√
dGEC(ϵ)/(H log(HK/δ) + log(|H|)) ·B ·K), we can derive from (A.7) that,

with probability at least 1− δ, it holds that

Regret(K) ≲
√
dGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·B ·K. (A.8)

This finishes the proof of Theorem 4.4.

A.2 Proof of Theorem 6.7

Proof of Theorem 6.7. Consider the following decomposition of the regret,

Regret(K) =

K∑
k=1

V ∗
1 (x1)− V µk,†

1 (x1)

=

K∑
k=1

V ∗
1 (x1)− V µk,νk

1 (x1) +

K∑
k=1

V µk,νk

1 (x1)− V µk,†
1 (x1)

=

K∑
k=1

V ⋆
1 − V1,fk︸ ︷︷ ︸

Term (Max.i)

+

K∑
k=1

V1,fk − V µk,νk

1︸ ︷︷ ︸
Term (Max.ii)

+

K∑
k=1

V µk,†
1,gk − V µk,†

1︸ ︷︷ ︸
Term (Min.i)

+

K∑
k=1

V µk,νk

1 − V µk,†
1,gk︸ ︷︷ ︸

Term (Min.ii)

, (A.9)

where in the last equality we omit the dependence on x1 for simplicity.

Term (Max.i). Note that by our definition in both Example 6.1 and Example 6.2, we have that V ∗
1 = V1,f∗ .

Thus we can rewrite the term (Max.i) as

Term (Max.i) =

K∑
k=1

V1,f∗(x1)− V1,fk(x1). (A.10)

Then by our choice of fk in (6.12) and the fact that f∗ ∈ H, we have that for each k ∈ [K],

V1,f∗(x1)− η

H∑
h=1

Lk−1
h (f∗) ≤ V1,fk(x1)− η

H∑
h=1

Lk−1
h (fk). (A.11)

By combining (A.10) and (A.11), we can derive that

Term (Max.i) ≤ η

K∑
k=1

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (fk). (A.12)

Now applying Assumption 6.6 to (A.12), we can further derive that with probability at least 1− δ,

Term (Max.i) ≤ −c(max.i) · η
K∑

k=1

k−1∑
s=1

H∑
h=1

Eξh∼πk [ℓfs(f ; ξh)] + c(max.i) ·BK
(
H log(HK/δ) + log(|H|)

)
, (A.13)

for some absolute constant c(max.i) > 0.
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Term (Max.ii). For term (Max.ii), we apply Assumption 6.5 and obtain that, for any ϵ > 0,

Term (Max.ii) ≤ inf
ζ>0

{
ζ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓfs(fk; ξh)] +
dTGEC(ϵ)

2ζ
+
√
dTGEC(ϵ)HK + ϵHK

}
.

By taking ζ/2 = c(max.i) · η, we can further derive that

Term (Max.ii) ≤ c(max.i) · η
H∑

h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓfs(fk; ξh)] +
dTGEC(ϵ)

4c(max.i)η
+
√
dTGEC(ϵ)HK + ϵHK. (A.14)

Term (Min.i). For either model-free or model-based hypothsis, by our definition in Example 6.1 and Ex-

ample 6.2 respectively, we both have that V µk,†
1 = V µk,†

1,⋆ . Here ⋆ = Qµk,† for model-free hypothesis and ⋆ = f∗

for model-based hypothesis. Thus we can rewrite the term (Min.i) as4.

Term (Min.i) =

K∑
k=1

V µk,†
1,gk (x1)− V µk,†

1,⋆ (x1). (A.15)

Then by our choice of gk in (6.13) and the fact that ⋆ ∈ H (Assumption 6.3), we have that for each k ∈ [K],

−V µk,†
1,⋆ (x1)− η

H∑
h=1

Lk−1
h,µk(⋆) ≤ −V µk,†

1,gk (x1)− η

H∑
h=1

Lk−1
h,µk(g

k) (A.16)

By combining (A.15) and (A.16), we can derive that

Term (Min.i) ≤ η

K∑
k=1

H∑
h=1

Lk−1
h,µk(⋆)− Lk−1

h,µk(g
k) (A.17)

Now applying Assumption 6.6 to (A.17), we can further derive that with probability at least 1− δ,

Term (Min.i) ≤ −c(min.i) · η
K∑

k=1

k−1∑
s=1

H∑
h=1

Eξh∼πk [ℓgs,µk(g; ξh)] + c(min.i) · ηBK
(
H log(HK/δ) + log(|H|)

)
.

(A.18)

Term (Min.ii). For term (Min.ii), we apply Assumption 6.5 and obtain that, for any ϵ > 0,

Term (Min.ii) ≤ inf
ζ>0

{
ζ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓgs,µk(gk; ξh)] +
dTGEC(ϵ)

2ζ
+
√
dTGEC(ϵ)HK + ϵHK

}
.

By taking ζ/2 = c(min.i) · η, we can further derive that

Term (Max.ii) ≤ c(min.i) · η
H∑

h=1

K∑
k=1

k−1∑
s=1

Eξh∼πk [ℓgs,µk(gk; ξh)] +
dTGEC(ϵ)

4c(min.i)η
+
√
dTGEC(ϵ)HK + ϵHK. (A.19)

Combining Term (Max.i), Term (Max.ii), Term (Min.i), and Term (Min.ii). Finally, combining
(A.13), (A.14), (A.18), and (A.14), taking ϵ = 1/

√
HK and

η =

√
dTGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B ·K
, (A.20)

we can finally derive that with probability at least 1− 2δ,

Regret(K) ≲
√
dTGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·B ·K.

This finishes the proof of Theorem 6.7.
4We remark that this notation is well-defined, since we assume that Qµf ,† ∈ H for any f ∈ H in Assumption 4.1.
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B Examples of Model-based and Model-free Online RL in MDPs

In this section, we specify Corollaries 5.2 and 5.4 to various examples of MDPs with low generalized eluder
coefficient (GEC Zhong et al. (2022)). Sections B.1 and B.2 consider model-free hypothesis and model-based
hypothesis, respectively. After, we give proof of the generalization guarantees involved in Section 5. Section B.3
provides proof of Proposition 5.1 and Section B.4 provides proof of Proposition 5.3.

B.1 Examples of Model-free Online RL in MDPs

MDPs with low Bellman eluder dimension. In this part, we study MDPs with low Bellman eluder (BE)
dimension (Jin et al., 2021a). To introduce, we define the notion of ϵ-independence between distributions and
the notion of distributional eluder dimension.

Definition B.1 (ϵ-independence between distributions). Let G be a function class on the space X , and let
ν, µ1, · · · , µn be probability measures on X . We say ν is ϵ-independent of {µ1, · · · , µn} with respect to G if
there exists a g ∈ G such that

√∑n
i=1(Eµi

[g])2 ≤ ϵ but |Eν [g]| > ϵ.

Definition B.2 (Distributional Eluder (DE) dimension). Let G be a function class on space X , and let Π be
a family of probability measures on X . The distributional eluder dimension dimDE(G,Π, ϵ) is defined as the
length of the longest sequence {ρ1, · · · , ρn} ⊂ Π such that there exists ϵ′ ≥ ϵ with ρi being ϵ′-independent of
{ρ1, · · · , ρi−1} for each i ∈ [n].

The Bellman eluder dimension is based upon the notion of distributional eluder dimsntion. For a model-free
hypothesis class H, we the Bellman operator Th defined in Section 2 becomes,

(Thfh+1)(x, a) = Rh(x, a) + Ex′∼Ph(·|x,a)[Vh+1,f (x
′)], (B.1)

for any f ∈ H. Then we define the Q-type/V -type Bellman eluder dimension as the following.

Definition B.3 (Q-type Bellman eluder (BE) dimension (Jin et al., 2021a; Zhong et al., 2022)). We define
(I − Th)H = {(x, a) 7→ (fh − Thfh+1)(x, a) : f ∈ H} as the set of Bellman residuals induced by H at step h,
and let Π = {Πh}Hh=1 be a collection of H families of probability measure over S × A. The Q-type ϵ-Bellman
eluder dimension of H with respect to Π is defined as

dimBE(H,Π, ϵ) = max
h∈[H]

{dimDE ((I − Th)H,Πh, ϵ)} .

Definition B.4 (V -type Bellman eluder (BE) dimension (Jin et al., 2021a; Zhong et al., 2022)). We define
(I −Th)VH = {x 7→ (fh −Thfh+1)(x, πh,f (x)) : f ∈ H} as the set of V -type Bellman residuals induced by H at
step h, and let Π = {Πh}Hh=1 be a collection of H families of probability measure over S. The V -type ϵ-Bellman
eluder dimension of H with respect to Π is defined as

dimVBE(H,Π, ϵ) = max
h∈[H]

{dimDE ((I − Th)VH,Πh, ϵ)} .

For MDPs with low Bellman eluder dimension, we choose the function l in Assumption 3.1 as

lf ′
(
(fh, fh+1);Dh

)
= Qh,f (xh, ah)− rh − Vh+1,f (xh+1). (B.2)

and we choose the operator Ph = Th defined in (B.1). One can check that such a choice satisfies Assumption 3.1.
By further choosing the exploration policy as πexp(f) = πf for Q-type problems and πexp(f) = πf ◦h Unif(A)
for V -type problems5, we can bound the GEC for MDPs with low BE dimension by the following lemma.

Lemma B.5 (GEC for low Bellman eluder dimension, Lemma 3.16 in Zhong et al. (2022)). Let the discrepancy
ℓ function be chosen as (5.1) with l defined in (B.2). Define ΠH as the distributions induced by following some
f ∈ H greedily. For Q-type problems, by choosing πexp(f) = πf , we have that

dGEC(ϵ) ≤ 2 dimBE(H,ΠH, ϵ)H · log(K),

For V -type problems, by choosing πexp(f) = πf ◦h Unif(A), we have that

dGEC(ϵ) ≤ 2 dimVBE(H,ΠH, ϵ)|A|H · log(K).
5The policy πf ◦h Unif(A) means that when executing the exploration policy to collect data Dh at timestep h, the agent first

executes policy πf for the first h− 1 steps and then takes an action uniformly sampled from A at timestep h.
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Proof of Lemma B.5. See Lemma 3.16 in Zhong et al. (2022) for a detailed proof.

By combining Lemma B.5 and Corollary 5.2, we can obtain that for Q-type low Bellman eluder dimension
problem, it holds that with probability at least 1− δ,

Regret(T ) ≲ B2
l ·
√
dimBE(H,ΠH, 1/

√
HK) · log(HK|H|/δ) ·H2K, (B.3)

and for V -type Bellman eluder dimension problem, it holds that with probability at least 1− δ,

Regret(T ) ≲ B2
l ·
√
dimVBE(H,ΠH, 1/

√
HK) · |A| · log(HK|H|/δ) ·H2K. (B.4)

MDPs of bilinear class. In this part, we consider MDPs of bilinear class (Du et al., 2021).

Definition B.6 (Bilinear class (Du et al., 2021; Zhong et al., 2022)). Given an MDP, a model-free hypothesis
class H, and a function lf : H × H × (S × A × R × S) 7→ R, we say the corresponding RL problem is in a
bilinear class if there exist functions Wh : H 7→ V and Xh : H 7→ V for some Hilbert space V, such that for all
f, g ∈ H and h ∈ [H], we have that∣∣Eπf

[Qh,f (xh, ah)−Rh(xh, ah)− Vh+1,f (xh+1)]
∣∣ ≤ |⟨Wh(f)−Wh(f

∗), Xh(f)⟩V | ,∣∣Exh∼πf ,ah∼π̃[lf (g; ξh)]
∣∣ = |⟨Wh(g)−Wh(f

∗), Xh(f)⟩V | ,

where π̃ is either πf for Q-type problems or πg for V -type problems. Meanwhile, we make the assumption that
supf∈H,h∈[H] ∥Wh(f)∥2 ≤ 1 and supf∈H,h∈[H] ∥Xh(f)∥2 ≤ 1.

For MDPs of bilinear class, we choose the function l as the function introduced in the definition of bilinear
class. By choosing the exploration policy as πexp(f) = πf for Q-type problems and πexp(f) = πf ◦hUnif(A) for
V -type problems, we can bound the generalized eluder coefficient for MDPs of bilinear class using the following
lemma. To simplify the notation, we define Xh = {Xh(f) : f ∈ H} ⊆ V and X = {Xh : h ∈ [H]}.

Lemma B.7 (GEC for bilinear class, Lemma 3.22 in Zhong et al. (2022)). Let the discrepancy ℓ function be
chosen as (5.1) with l defined in Definition B.6. Define the maximum information gain γK(ϵ,X ) as

γK(ϵ,X ) =

H∑
h=1

max
x1,··· ,xK∈Xh

log det

(
I(·) + 1

ϵ

K∑
s=1

xs⟨xs, ·⟩V

)

with I being the identity mapping. Then for Q-type problems, choosing πexp(f) = πf , we have that

dGEC(ϵ) ≤ 2γK(ϵ,X ).

For V -type problems, by choosing πexp(f) = πf ◦h Unif(A), we have that

dGEC(ϵ) ≤ 2|A|γK(ϵ,X ).

Proof of Lemma B.5. See Lemma 3.22 in Zhong et al. (2022) for a detailed proof.

By combining Lemma B.7 and Corollary 5.2, we know that For Q-type bilinear class problem, it holds that
with probability at least 1− δ,

Regret(T ) ≲
√
γK(1/

√
HK,X ) · log(HK|H|/δ) ·HK, (B.5)

and for V -type bilinear class problem, it holds that with probability at least 1− δ,

Regret(T ) ≲
√
γK(1/

√
HK,X ) · |A| · log(HK|H|/δ) ·HK. (B.6)
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B.2 Examples of Model-based Online RL in MDPs

MDPs with low witness rank. We consider the example of MDPs with low witness rank (Sun et al., 2019;
Agarwal and Zhang, 2022). To introduce, we define the function class V = {υ : S ×A× S 7→ [0, 1]}.

Definition B.8 (Q-type/V-type witness rank (Sun et al., 2019; Agarwal and Zhang, 2022)). An MDP is called
of witness rank d if for any two models f, f ′ ∈ H, there exists mappings Xh : H 7→ Rd and Wh : H 7→ Rd for
each timestep h such that,

max
υ∈V

Exh∼πf ,ah∼π̃

[(
Ex′∼Ph,f′ (·|xh,ah) − Ex′∼Ph,f∗ (·|xh,ah)

)
[υ(xh, ah, x

′)]
]
≥ ⟨Wh(f

′), Xh(f)⟩,

κwit · Exh∼πf ,ah∼π̃

[(
Ex′∼Ph,f′ (·|xh,ah) − Ex′∼Ph,f∗ (·|xh,ah)

)
[Vh+1,f ′(x′)]

]
≤ ⟨Wh(f

′), Xh(f)⟩,

where π̃ is either πf for Q-type problems or πf ′ for V -type problems and κwit ∈ (0, 1] is a constant. Also, we
let supf∈H,h∈[H] ∥Wh(f)∥ ≤ 1 and supf∈H,h∈[H] ∥Xh(f)∥ ≤ 1.

By choosing the exploration policy as πexp(f) = πf for Q-type problems and πexp(f) = πf ◦h Unif(A) for
V -type problems, we can bound the generalized eluder coefficient by the following lemma.

Lemma B.9 (GEC for low witness rank, Lemma 3.22 in Zhong et al. (2022)). Let the discrepancy function ℓ
be chosen as (5.4). For Q-type problems, by choosing πexp(f) = πf , we have that

dGEC(ϵ) ≤ 4dH · log(1 +K/(ϵκ2wit))/κ
2
wit.

For V -type problems, by choosing πexp(f) = πf ◦h Unif(A), we have that

dGEC(ϵ) ≤ 4d|A|H · log(1 +K/(ϵκ2wit))/κ
2
wit.

Proof of Lemma B.9. See Lemma 3.22 in Zhong et al. (2022) for a detailed proof.

By combining Lemma B.9 and Corollary 5.4, we know that For Q-type low witness rank problem, it holds
that with probability at least 1− δ,

Regret(K) ≲
√
4dH2K · log(H|H|/δ) · log(1 +H1/2K3/2/κ2wit)/κ

2
wit, (B.7)

and for V -type low witness rank problem, it holds that with probability at least 1− δ,

Regret(K) ≲
√

4d|A|H2K · log(H|H|/δ) · log(1 +H1/2K3/2/κ2wit)/κ
2
wit. (B.8)

B.3 Proof of Proposition 5.1

Proof of Proposition 5.1. To prove Proposition 5.1, we define the random variables Xk
h,f as

Xk
h,f = lfk((fh, fh+1);Dk

h)
2 − lfk((Phfh+1, fh+1);Dk

h)
2, (B.9)

for any f ∈ H, where the operator Ph is introduced in Assumption 3.1. We first show that Xk
h,f is an unbiased

estimator of the discrepancy function ℓfk(f). Consider that

lfk((fh, fh+1);Dk
h)

2 =
(
lfk((fh, fh+1);Dk

h)− lfk((Phfh+1, fh+1);Dk
h) + lfk((Phfh+1, fh+1);Dk

h)
)2

=
(
Exk

h+1∼Ph(·|xk
h,a

k
h)
[lfk((fh, fh+1);Dk

h)] + lfk((Phfh+1, fh+1);Dk
h)
)2

=
(
Exk

h+1∼Ph(·|xk
h,a

k
h)
[lfk((fh, fh+1);Dk

h)]
)2

+ lfk((Phfh+1, fh+1);Dk
h)

2

+ 2Exk
h+1∼Ph(·|xk

h,a
k
h)
[lfk((fh, fh+1);Dk

h)] · lfk((Phfh+1, fh+1);Dk
h), (B.10)
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where in the second equality we apply the generalized Bellman completeness condition in Assumption 3.1. By
the generalized Bellman completeness condition again, we also have that in (B.10),

Exk
h+1∼Ph(·|xk

h,a
k
h)

[
Exk

h+1∼Ph(·|xk
h,a

k
h)
[lfk((fh, fh+1);Dk

h)] · lfk((Phfh+1, fh+1);Dk
h)
]

= Exk
h+1∼Ph(·|xk

h,a
k
h)
[lfk((fh, fh+1);Dk

h)] · Exk
h+1∼Ph(·|xk

h,a
k
h)
[lfk((Phfh+1, fh+1);Dk

h)]

= Exk
h+1∼Ph(·|xk

h,a
k
h)
[lfk((fh, fh+1);Dk

h)]

· Exk
h+1∼Ph(·|xk

h,a
k
h)

[
lfk((fh, fh+1);Dk

h)− Exk
h+1∼Ph(·|xk

h,a
k
h)
[lfk((fh, fh+1);Dk

h)]
]

= 0. (B.11)

Thus by combining (B.10) and (B.11), we can derive that

Exk
h+1∼Ph(·|xk

h,a
k
h)
[Xk

h,f ] =
(
Exk

h+1∼Ph(·|xk
h,a

k
h)
[lfk((fh, fh+1);Dk

h)]
)2

= ℓfk(f ;Dk
h), (B.12)

Now for each timestep h, we define a filtration {Fh,k}Kk=1, with

Fh,k = σ

(
k⋃

s=1

H⋃
h=1

Ds
h

)
, (B.13)

where Ds
h = {xsh, ash, rsh, xsh+1}. From previous arguments, we can derive that

E[Xk
h,f |Fh,k−1] = E

[
Exk

h+1∼Ph(·|xk
h,a

k
h)
[Xh,fk ]

∣∣∣Fh,k−1

]
= Eξh∼πexp(fk)[ℓfk(f ; ξh)]. (B.14)

and that

V[Xk
h,f |Fh,k−1] ≤ E[(Xk

h,f )
2|Fh,k−1] ≤ 4B2

l E[Xk
h,f |Fh,k−1] = 4B2

l Eξh∼πexp(fk)[ℓfk(f ; ξh)], (B.15)

where Bl is the upper bound of l defined in Assumption 3.1. By applying Lemma D.2, (B.14), and (B.15), we
can obtain that with probability at least 1− δ, for any (h, k) ∈ [H]× [K], (fh, fh+1) ∈ Hh ×Hh+1

6,∣∣∣∣∣
k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)]−
k−1∑
s=1

Xs
h,f

∣∣∣∣∣ ≲ 1

2

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] + 8B2
l log(HK|Hh||Hh+1|/δ). (B.16)

Rearranging terms in (B.16), we can further obtain that

−
k−1∑
s=1

Xs
h,f ≲ −1

2

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] + 8B2
l log(HK|Hh||Hh+1|/δ). (B.17)

Meanwhile, by the definition of Xk
h,f in (B.9) and the loss function L in (3.3), we have that

k−1∑
s=1

Xs
h,f =

k−1∑
s=1

lfs((fh, fh+1),Ds
h)

2 −
k−1∑
s=1

lfk((Phfh+1, fh+1),Ds
h)

2

≤
k−1∑
s=1

lfs((fh, fh+1),Ds
h)

2 − inf
f ′
h∈F

k−1∑
s=1

lfs((f ′h, fh+1),Ds
h)

2

= Lk−1
h (f). (B.18)

Thus by (B.17) and (B.18), we can derive that with probability at least 1− δ, for any f ∈ H, k ∈ [K],

−
H∑

h=1

Lk−1
h (f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] + 8HB2
l log (HK/δ) + 16B2

l log(|H|). (B.19)

Finally, we deal with the term Lk−1
h (f∗). To this end, we invoke the following lemma.

6Here lfs ((fh, fh+1);Ds
h) and ℓfs (f ; ξh) depend on f only through (fh, fh+1).
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Lemma B.10. With probability at least 1− δ, it holds that for each k ∈ [K],

H∑
h=1

Lk−1
h (f∗) ≲ 8HB2

l log (HK|H|/δ) + 16B2
l log(|H|).

Proof of Lemma B.10. To prove Lemma B.10, we define the random variables W k
h,f as

W k
h,f = lfk((fh, f

∗
h+1);Dk

h)
2 − lfk((f∗h , f

∗
h+1);Dk

h)
2.

Using the same argument as (B.10) and (B.11), together with the condition Phf
∗
h+1 = f∗h in Assumption 3.1,

we can show that

Exk
h+1∼Ph(·|xk

h,a
k
h)
[W k

h,f ] =
(
Exk

h+1∼Ph(·|xk
h,a

k
h)
[lfk((fh, f

∗
h+1);Dh)]

)2
. (B.20)

Under the filtration {Fh,k}Kk=1 defined in the proof of Proposition 5.1, i.e, (B.13), one can derive that

E[W k
h,f |Fh,k−1] = E

[
Exk

h+1∼Ph(·|xk
h,a

k
h)
[Wh,fk ]

∣∣∣Fh,k−1

]
= EDh∼πexp(fk)

[(
Exh+1∼Ph(·|xh,ah)[lfk((fh, f

∗
h+1);Dh)]

)2]
, (B.21)

and that

V[W k
h,f |Fh,k−1] ≤ 4B2

l E[Xk
h,f |Fh,k−1]

= 4B2
l EDh∼πexp(fk)

[(
Exh+1∼Ph(·|xh,ah)[lfk((fh, f

∗
h+1);Dh)]

)2]
. (B.22)

By applying Lemma D.2, (B.21), and (B.22), we obtain that with probability at least 1 − δ, for any (h, k) ∈
[H]× [K] and (fh, fh+1) ∈ Hh ×Hh+1,∣∣∣∣∣

k−1∑
s=1

W s
h,f −

k−1∑
s=1

EDh∼πexp(fk)

[(
Exh+1∼Ph(·|xh,ah)[lfs((fh, f

∗
h+1);Dh)]

)2]∣∣∣∣∣ ≲ 4B2
l log(HK|Hh||Hh+1|/δ)

+

√√√√log(HK|Hh||Hh+1|/δ) ·
k−1∑
s=1

EDh∼πexp(fs)

[(
Exh+1∼Ph(·|xh,ah)[lfk((fh, f∗h+1);Dh)]

)2]
.

Rearranging terms, we have that with probability at least 1− δ, for any f ∈ H, (h, k) ∈ [H]× [K],

−
k−1∑
s=1

W s
h,f ≲ 4B2

l log(HK|Hh||Hh+1|/δ)−
k−1∑
s=1

EDh∼πexp(fs)

[(
Exh+1∼Ph(·|xh,ah)[lfs((fh, f

∗
h+1);Dh)]

)2]

+

√√√√log(HK|Hh||Hh+1|/δ) ·
k−1∑
s=1

EDh∼πexp(fs)

[(
Exh+1∼Ph(·|xh,ah)[lfs((fh, f∗h+1);Dh)]

)2]
≲ 8B2

l log(HK|Hh||Hh+1|/δ),

where in the second inequality we use the inequality −x2 + ax ≤ a2/4. Thus, with probability at least 1− δ,
for any k ∈ [K], it holds that

H∑
h=1

Lk−1
h (f∗) =

H∑
h=1

(
k−1∑
s=1

lfk((f∗h , f
∗
h+1);Ds

h)
2 − inf

fh∈Hh

k−1∑
s=1

lfk((fh, f
∗
h+1);Ds

h)
2

)

=

H∑
h=1

sup
fh∈Hh

k−1∑
s=1

−W s
h,f ≲ 8HB2

l log(HK/δ) + 16B2
l log(|H|).

This finishes the proof of Lemma B.10.
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Finally, combining (B.19) and Lemma B.10, with probability at least 1− δ, for any f ∈ H, k ∈ [K],

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] + 16HB2
l log(HK/δ) + 32B2

l log(|H|).

This finishes the proof of Proposition 5.1.

B.4 Proof of Proposition 5.3

Proof of Proposition 5.3. For notational simplicity, given f ∈ H, we denote the random variables Xk
h,f as

Xk
h,f = log

(
Ph,f∗(xkh+1|xkh, akh)
Ph,f (xkh+1|xkh, akh)

)
. (B.23)

Then by the definition of Lk
h in (3.5), we have that,

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) = −
H∑

h=1

k−1∑
s=1

Xs
h,f . (B.24)

Now we define a filtration {Fh,k}Kk=1 for each step h ∈ [H] with

Fh,k = σ

(
k⋃

s=1

H⋃
h=1

Ds
h

)
. (B.25)

Then by (B.23) we know that Xk
h,f ∈ Fh,k for any (h, k) ∈ [H]× [K]. Therefore, by applying Lemma D.1, we

have that with probability at least 1− δ, for any (h, k) ∈ [H]× [K] and fh ∈ Hh,

−1

2

k−1∑
s=1

Xs
h,f ≤

k−1∑
s=1

logE
[
exp

{
−1

2
Xs

h,f

}∣∣∣∣Fs−1

]
+ log(H|Hh|/δ). (B.26)

Meanwhile, we can calculate that in (B.26), the conditional expectation equals to

E
[
exp

{
−1

2
Xs

h,f

}∣∣∣∣Fs−1

]
= E

[√
Ph,f (xsh+1|xsh, ash)
Ph,f∗(xsh+1|xsh, ash)

∣∣∣∣∣Fs−1

]

= E(xs
h,a

s
h)∼πexp(fs),xs

h+1∼Ph,f∗ (·|xs
h,a

s
h)

[√
Ph,f (xsh+1|xsh, ash)
Ph,f∗(xsh+1|xsh, ash)

]

= E(xs
h,a

s
h)∼πexp(fs)

[∫
S

√
Ph,f (xsh+1|xsh, ash) · Ph,f∗(xsh+1|xsh, ash)dx

s
h+1

]
= 1− 1

2
E(xs

h,a
s
h)∼πexp(fs)

[∫
S

(√
Ph,f (xsh+1|xsh, ash)−

√
Ph,f∗(xsh+1|xsh, ash)

)2
dxsh+1

]
= 1− E(xs

h,a
s
h)∼πexp(fs)

[
DH(Ph,f∗(·|xsh, ash)∥Ph,f (·|xsh, ash))

]
, (B.27)

where the first equality uses the definition of Xs
h,f in (B.23), the second equality is due to the fact that ξsh ∼ πs

and πs ∈ Fs−1, and the last equality uses the definition of Hellinger distance DH. Thus by combining (B.26)
and (B.27), we can derive that

−1

2

k−1∑
s=1

Xs
h,f ≤

k−1∑
s=1

E
[
exp

{
−1

2
Xs

h,f

}∣∣∣∣Fs−1

]
− 1 + log(H|Hh|/δ)

= −
k−1∑
s=1

E(xs
h,a

s
h)∼πexp(fs) [DH(Ph,f∗(·|xsh, ash)∥Ph,f (·|xsh, ash))] + log(H|Hh|/δ),
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where in the first inequality we use the fact that log(x) ≤ x− 1. Finally, by plugging in the definition of Xs
h,f ,

summing over h ∈ [H], we have that with probability at least 1− δ, for any f ∈ H, any k ∈ [K], it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) = −
H∑

h=1

k−1∑
s=1

Xs
h,f

≤ −2

H∑
h=1

k−1∑
s=1

E(xs
h,a

s
h)∼πexp(fs) [DH(Ph,f∗(·|xsh, ash)∥Ph,f (·|xsh, ash))] + 2H log(H/δ) + 2 log(|H|),

= −2

H∑
h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] + 2H log(H/δ) + 2 log(|H|). (B.28)

This finishes the proof of Proposition 5.3.

C Proofs for Model-free and Model-based Online RL in Two-player
Zero-sum MGs

C.1 Proof of Proposition 6.11

Proof of Proposition 6.11. To begin with, we need to introduce the performance difference lemma in two-player
zero-sum MG, which are presented in Lemma 1 and Lemma 2 in Xiong et al. (2022).

Lemma C.1 (Value decomposition for the max-player). Let µ = µf and ν be an arbitrary policy taken by the
min-player. It holds that

V1,f (x1)− V µ,ν
1 (x1) ≤

H∑
h=1

Eξh∼(µ,ν) [Eh(fh, fh+1; ξh)] (C.1)

where max-player Bellman error Eh(fh, fh+1; ξh) is defined as

Eh(fh, fh+1; ξh) = Qh,f (xh, ah, bh)− rh − (PhVh+1,f )(xh, ah, bh), (C.2)

and ξh = (xh, ah, bh, rh). (Actually, this coincides with the NE Bellman error defined in (6.10).)

Lemma C.2 (Value decomposition for the min-player). Suppose that µ = µf is taken by the max-player and
g is the hypothesis selected by the min-player. Let ν be the policy taken by the min-player. Then, it holds that

V µ,ν
1 (x1)− V µ,†

1,g (x1) = −
H∑

h=1

Eξh∼(µ,ν) [Eµ
h (gh, gh+1; ξh)] , (C.3)

where the min-player Bellman error Eµ
h (gh, gh+1; ξh) is defined as

Eµ
h (gh, gh+1; ξh) = Qµ,†

h,g(xh, ah, bh)− rh − (PhV
µ,†
h+1,g)(xh, ah, bh), (C.4)

and ξh = (xh, ah, bh, rh).

We note that the value decomposition for the max-player is an inequality because of the property of minimax
formulation. Note also that the right side of (C.3) is a general version of the right side of (C.1) when choosing
µ = µf . Now we are ready to prove Proposition 6.11. The lemmas suggest that we only need to upper-bound

the term
∑K

k=1

∑H
h=1 |Eπk [Eµ

h (g
k
h, g

k
h+1; ξh)]| for all admissible max-player policy µ. To this end, we provide a

more general result by the following proposition. For simplicity, we denote by πk = (µk, νk).

Proposition C.3. For a d-dimensional two-player zero-sum Markov game, we assume that its expected min-
player bellman error can be decomposed as follows

Eξh∼πs [Eµ
h (gh, gh+1; ξh)] = ⟨Wh(g, µ), Xh(g,π

s, µ)⟩, (C.5)
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for some Wh(g, µ), Xh(g,π, µ) ∈ Rd, and the discrepancy function ℓg′,µ(g; ξh) can be lower bounded as follows

|⟨Wh(g, µ), Xh(g
′,π, µ)⟩|2 ≤ Eξh∼π[ℓg′,µ(g; ξh)], (C.6)

for all the admissible max-player policy µ ∈ M. Also, we assume that ∥Wh(·, ·)∥2 ≤ BW , ∥Xh(·, ·, ·)∥2 ≤ BX

for some BW , BX > 0 and for all timestep h ∈ [H]. Then it holds that

K∑
k=1

H∑
h=1

∣∣Eξh∼πk

[
Eµ
h (g

k
h, g

k
h+1; ξh)

] ∣∣ ≤ d̃(ϵ)

4η
+
η

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eπs [ℓgs,µ(g
k; ξh)] + 2min{HK, 2d̃(ϵ)}+HKBW ϵ,

for all admissible max-player policy µ ∈ M, ϵ ∈ [0, 1], η > 0, and d̃(ϵ) := d log(1 +KB2
X/(dϵ)).

Proof of Proposition C.3. We prove this result following a similar procedure as in the proof of Lemma 3.20 in
Zhong et al. (2022), where they prove that the low-GEC class contains the bilinear class. We denote by

Σh,k = ϵId +

k−1∑
s=1

Xh(g
s,πs, µ)Xh(g

s,πs, µ)⊤.

By Lemma F.3 in Du et al. (2021) and Lemma D.3, we first have the following equality,

k∑
s=1

min
{
∥Xh(g

s,πs, µ)∥Σ−1
h,s
, 1
}
≤ 2d̃(ϵ), (C.7)

for all ϵ ∈ [0, 1]. Here d̃(ϵ) is defined in Proposition C.3. Now, since the reward is bounded by [0, 1], we have
the following inequalities,

K∑
k=1

H∑
h=1

∣∣Eπk

[
Eµ
h (g

k
h, g

k
h+1; ξh)

] ∣∣
=

K∑
k=1

H∑
h=1

min{1, ⟨Wh(g
k, µ), Xh(g

k,πk, µ)⟩}1
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k

≤ 1
}

+

K∑
k=1

H∑
h=1

min{1, ⟨Wh(g
k, µ), Xh(g

k,πk, µ)⟩}1
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k

> 1
}

≤
K∑

k=1

H∑
h=1

⟨Wh(g
k, µ), Xh(g

k,πk, µ)⟩1
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k

≤ 1
}
+min{HK, d̃(ϵ)}

≤
K∑

k=1

H∑
h=1

∥Wh(g
k, µ)∥Σh,k

min
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k
, 1
}

︸ ︷︷ ︸
(A)h,k

+min{HK, d̃(ϵ)}, (C.8)

where the first equality relies on the assumption in Proposition C.3, the second inequality comes from (C.7),
and the last inequality is based on Cauchy Schwarz inequality. Now we expand term (A)h,k in (C.8) as follows.

∥Wh(g
k, µ)∥Σh,k

≤
√
ϵBW +

[
k−1∑
s=1

|⟨Wh(g
k, µ), Xh(g

s,πs, µ)⟩|2
]1/2

,
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where we use the fact that ∥Wh(g
k, µ)∥2 ≤ BW . Thus we have that

K∑
k=1

H∑
h=1

(A)h,k ≤
K∑

k=1

H∑
h=1

√
ϵBW +

[
k−1∑
s=1

|⟨Wh(g
k, µ), Xh(g

s,πs, µ)⟩|2
]1/2 ·min

{
∥Xh(g

k,πk, µ)∥Σ−1
h,k
, 1
}

≤

[
K∑

k=1

H∑
h=1

√
ϵBW

]1/2
·

[
K∑

k=1

H∑
h=1

min
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k
, 1
}]1/2

+

[
K∑

k=1

H∑
h=1

k−1∑
s=1

|⟨Wh(g
k, µ), Xh(g

s,πs, µ)⟩|2
]1/2

·

[
K∑

k=1

H∑
h=1

min
{
∥Xh(g

k,πk, µ)∥Σ−1
h,k
, 1
}]1/2

≤
√
HBWKϵ ·min{2d̃(ϵ), HK}+

[
2d̃(ϵ)

K∑
k=1

H∑
h=1

k−1∑
s=1

|⟨Wh(g
k, µ), Xh(g

s,πs, µ)⟩|2
]1/2

≤
√
HKBW ϵ ·min{2d̃(ϵ), HK}+

[
2d̃(ϵ)

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)]

]1/2
,

where the second inequality is the result of Cauchy-Schwarz inequality, the third inequality comes from (C.7),
and the last inequality is derived from (C.6). Back to the analysis for (C.8), we have that

K∑
k=1

H∑
h=1

∣∣Eπk

[
Eµ
h (g

k
h, g

k
h+1; ξh)

] ∣∣ ≤√HKBW ϵ ·min{2d̃(ϵ), HK}

+

[
2d̃(ϵ)

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)]

]1/2
+min{HK, 2d̃(ϵ)}

≤

[
2d̃(ϵ)

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)]

]1/2
+ 2min{HK, 2d̃(ϵ)}+HKBW ϵ

≤ d̃(ϵ)

4η
+
η

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,h(g
k; ξh)] + 2min{HK, 2d̃(ϵ)}+HKBW ϵ,

where the second inequality comes from the AM-GM inequality and the last inequality uses the basic inequality
2ab ≤ a2 + b2. Here η > 0 can be arbitrarily chosen. Then we finish our proof to Proposition C.3.

Back to our proof of Proposition 6.11, we first check the conditions of Proposition C.3 for linear two-player
zero-sum MGs. By Definition 6.10 and the choice of model-free hypothesis class (6.25), we know that for any
g ∈ H and µ ∈ N, it holds that

Qh,g(x, a, b)− rh(x, a, b)− (PhV
µ,†
h+1,g)(x, a, b) = ϕh(x, a, b)

⊤
(
θh,g − αh −

∫
S
ψ⋆
h(x

′)V µ,†
h+1,g(x

′)dx′
)
,

where θh,g denotes the parameter of Qh,g and αh is the reward parameter (see Definition 6.10). Thus we can
define Xh(g,π, µ) = Eπ[ϕh(x, a, b)] and

Wh(g, µ) = θh,g − αh −
∫
S
ψ⋆
h(x

′)V µ,†
h+1,g(x

′)dx′.

This specifies condition (C.5) of Proposition C.3. By Jansen inequality and the definition of ℓµ in (6.22), it is
obvious that the condition (C.6) of Proposition C.3 holds. By the assumptions of linear two-player zero-sum
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MGs in Definition 6.10, we have BX ≤ 1 and BW ≤ 4H
√
d. Thus by applying Proposition C.3, we have that

K∑
k=1

V πk

1 (x1)− V µk,†
1,gk (x1) ≤

K∑
k=1

H∑
h=1

∣∣Eξh∼πk

[
Eµ
h (g

k
h, g

k
h+1; ξh)

] ∣∣
≤ d̃(ϵ)

4η
+
η

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)] + 2min{HK, 2d̃(ϵ)}+ 4

√
dH2Kϵ,

with d̃(ϵ) = d log(1 +K/dϵ) and any η > 0. This proves the second inequality of Assumption 6.5. For the first
inequality in Assumption 6.5, we take gk = fk, µ = µfk , and we can then similarly prove that

K∑
k=1

V1,fk(x1)− V πk

1 (x1) ≤
d̃(ϵ)

4η
+
η

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓfs(fk; ξh)] + 2min{HK, 2d̃(ϵ)}+ 4
√
dH2Kϵ,

with d̃(ϵ) = d log(1 +K/dϵ) and any η > 0. This proves that dTGEC(ϵ) ≤ d̃(ϵ).
As for the analysis for covering number, we apply the standard analysis for the covering number of Rd-ball

to obtain that

logN (H, ϵ, ∥ · ∥∞) ≤ d log

(
3

ϵ

)
+ d log

(
Vol(H)

Vol(Bd)

)
,

for all ϵ ≤ 1 and the unit ball Bd in Rd space. Selecting ϵ = 1/K, we finish the proof of Proposition 6.11.

C.2 Proof of Proposition 6.16

Proof of Proposition 6.16. Similar to the proof of Proposition 6.11, we can apply Lemma C.1, Lemma C.2,
and Proposition C.3 to obtain the upper bound of TGEC for linear mixture two-player zero-sum MGs. First
we need to check the conditions of Proposition C.3. Note that

Qµ,†
h,g(x, a, b)− rh − (PhV

µ,†
h+1,g)(x, a, b) = (Ph,gV

µ,†
h+1,g)(x, a, b)− (PhV

µ,†
h+1,g)(x, a, b)

=
(
θh,g − θ⋆h

)⊤(∫
S
ϕh(x, a, b, x

′)V µ,†
h+1,g(x

′)dx′
)
, (C.9)

where the first equality comes from the Bellman equation, and the second equality is derived from the definition
of linear mixture two-player zero-sum MG (Definition 6.15). Here θh,g denotes the parameter of Ph,g. Hence
we can define Xh and Wh as

Xh(g,π, µ) := Eπ

[∫
S
ϕh(x, a, b, x

′)V µ,†
h+1,g(x

′)dx′
]
, Wh(g, µ) := θh,g − θ⋆h. (C.10)

This specifies condition (C.5) of Proposition C.3. By the assumptions of linear mixture two-player zero-sum
MGs in Definition 6.15, we can obtain that BX ≤ 1 and BW ≤ 4H

√
d. As for condition (C.6), different from

the proof of Proposition 6.11, since we use Hellinger distance as the discrepancy function ℓ for the model-based
hypothesis, we propose to connect it to the model-free discrepancy function (6.22). Notice that(

Qµ,†
h,g(x, a, b)− rh − (PhV

µ,†
h+1,g)(x, a, b)

)2
=
(
(Ph,gV

µ,†
h+1,g)(x, a, b)− (PhV

µ,†
h+1,g)(x, a, b)

)2
≤ 4∥V µ,†

h+1,g(·)∥
2
∞ ·DTV(Ph,g(· |x, a, b)∥Ph(· |x, a, b))2

≤ 2H2DH(Ph,g(· |x, a, b)∥Ph(· |x, a, b))2

≤ 2H2DH(Ph,g(· |x, a, b)∥Ph(· |x, a, b)), (C.11)

where the second equality comes from Holder inequality and the fact that the TV distance DTV(p∥q) = ∥p−
q∥1/2 for any two distributions p and q, the third inequality follows from the fact that DTV(p∥q) ≤

√
2DH(p∥q),
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and the last inequality follows from the fact that DH(p∥q) ≤ 1. This shows that the model-based discrepancy
function defined in (6.27) upper-bounds the model-free discrepancy function up to a factor 2H2, that is,

Eξh∼π[ℓg′,µ(g; ξh)] = Eξh∼π[DH(Ph,g(·|xh, ah, bh)∥Ph(·|xh, ah, bh))]

≥ 1

2H2
Eξh∼π

[(
Qµ,†

h,g(xh, ah, bh)− rh − (PhV
µ,†
h+1,g)(xh, ah, bH)

)2]
= |⟨Wh(g, µ), Xh(g,π, µ)⟩|2. (C.12)

Thus by applying Proposition C.3, we have that

K∑
k=1

V πk

1 − V µk,†
1,gk ≤

K∑
k=1

H∑
h=1

∣∣Eξh∼πk

[
Eµ
h (g

k
h, g

k
h+1; ξh)

] ∣∣
≤ d̃(ϵ)

4η
+

η

4H2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)] + 2min{HK, 2d̃(ϵ)}+ 4

√
dH2Kϵ

=
d̄(ϵ)

4η′
+
η′

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µ(g
k; ξh)] + 2min{HK, 2d̄(ϵ)}+ 4

√
dH2Kϵ,

with d̄(ϵ) = 2H2d̃(ϵ) = 2H2d log(1+K/dϵ) and any η > 0 and η′ = η/(2H2). This proves the second inequality
of Assumption 6.5. For the first inequality in Assumption 6.5, we take gk = fk and let µ = µfk , and we can
then also similarly prove that

K∑
k=1

V1,fk − V πk

1 ≤ d̄(ϵ)

4η′
+
η′

2

K∑
k=1

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓfs(fk; ξh)] + 2min{HK, 2d̄(ϵ)}+ 4
√
dH2Kϵ.

This proves that dTGEC(ϵ) ≤ d̄(ϵ). As for the analysis of the covering number, it suffices to repeat the same as
the proof of Proposition 6.11. This finishes the proof of Proposition 6.16.

C.3 Proof of Proposition 6.8

Proof of Proposition 6.8. We first prove the first inequality of Proposition 6.8. To this end, we define the
random vairable Xk

h,f as

Xk
h,f =

(
Qh,f (x

k
h, a

k
h, b

k
h)− rkh − Vh+1,f (x

k
h+1)

)2
−
(
Vh+1,f (x

k
h+1)− Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[Vh+1,f (xh+1)]

)2
. (C.13)

After a calculation similar to (B.10) and (B.11), we can derive that

Exk
h+1∼Ph(·|xk

h,a
k
h,b

k
h)
[Xk

h,f ] =
(
Qh,f (x

k
h, a

k
h, b

k
h)− rkh − Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[Vh+1,f (xh+1)]

)2
.

Now for each timestep h, we define a filtration {Fh,k}Kk=1 with

Fh,k = σ

(
k⋃

s=1

H⋃
h=1

Ds
h

)
, (C.14)

where Ds
h = {xsh, ash, bsh, rsh, xsh+1}. With previous arguments, we can derive that

E[Xk
h,f |Fh,k−1] = E

[
Exk

h+1∼Ph(·|xk
h,a

k
h,b

k
h)
[Xh,fk ]|Fh,k−1

]
= Eξh∼πk [ℓfk(f ; ξh)], (C.15)

and that

V[Xk
h,f |Fh,k−1] ≤ E[(Xk

h,f )
2|Fh,k−1] ≤ 4B2

fE[Xk
h,f |Fh,k−1] = 4B2

fEξh∼πk [ℓfk(f ; ξh)], (C.16)
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where B is the upper bound of hypothesis in H by Assumption 6.4. By applying Lemma D.2, (C.15), and
(C.16), we can obtain that with probability at least 1−δ, for any (h, k) ∈ [H]×[K] and (fh, fh+1) ∈ Hh×Hh+1,∣∣∣∣∣

k−1∑
s=1

Eξh∼πs [ℓfs(f ; ξh)]−
k−1∑
s=1

Xs
h,f

∣∣∣∣∣ ≲ 1

2

k−1∑
s=1

Eξh∼πs [ℓfs(f ; ξh)] + 8B2
f log(HK|Hh||Hh+1|/δ). (C.17)

Rearranging terms in (C.17), we can further obtain that

−
k−1∑
s=1

Xs
h,f ≲ −1

2

k−1∑
s=1

Eξh∼πs [ℓfs(f ; ξh)] + 8B2
f log(HK|Hh||Hh+1|/δ). (C.18)

Meanwhile, by the definition of Xh,f in (C.13) and the loss function L in (6.15), we have that

k−1∑
s=1

Xs
h,f

=

k−1∑
s=1

(
Qh,f (x

s
h, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − k−1∑
s=1

(
Vh+1,f (x

s
h+1)− Exh+1∼Ph(·|xs

h,a
s
h,b

s
h)
[Vh+1,f (xh+1)]

)2
=

k−1∑
s=1

(
Qh,f (x

s
h, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − k−1∑
s=1

(
Thf(xsh, ash, bsh)− rsh − Vh+1,f (x

s
h+1)

)2
≤

k−1∑
s=1

(
Qh,f (x

s
h, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − inf
f ′
h∈Hh

k−1∑
s=1

(
Qh,f ′(xsh, a

s
h, b

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
= Lk−1

h (f). (C.19)

where the last inequality follows from the completeness assumption (Assumption 6.4). Combining (C.18) and
(C.19), we can derive that with probability at least 1− δ, for any f ∈ H, k ∈ [K],

−
H∑

h=1

Lk−1
h (f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓfs(f ; ξh)] + 8HB2
f log(HK/δ) + 16B2

f log(|H|). (C.20)

Finally, we deal with the term Lk
h(f

∗). To this end, we invoke the following lemma.

Lemma C.4. With probability at least 1− δ, it holds that for each k ∈ [K],

H∑
h=1

Lk−1
h (f∗) ≲ 8HB2

f log(HK/δ) + 16B2
f log(|H|).

Proof of Lemma C.4. To prove Lemma C.4, we define the random variable Wh,f as

W k
h,f =

(
Qh,f (x

k
h, a

k
h, b

k
h)− rkh − Vh+1,f∗(xkh+1)

)2 − (Qh,f∗(xkh, a
k
h, b

k
h)− rkh − Vh+1,f∗(xkh+1)

)2
.

Using the Bellman equation for Qf∗ , i.e.,

Qh,f∗(xkh, a
k
h, b

k
h) = rkh + Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[Vh+1,f∗(xh+1)]

we can calculate that

Exk
h+1∼Ph(·|xk

h,a
k
h,b

k
h)
[W k

h,f ] =
(
Qh,f (x

k
h, a

k
h, b

k
h)−Qh,f∗(xkh, a

k
h, b

k
h)
)2
. (C.21)

Under the filtration {Fh,k}Kk=1 defined in the proof of Proposition 6.8, i.e, (C.14), one can derive that

E[W k
h,f |Fh,k−1] = E

[
Exk

h+1∼Ph(·|xk
h,a

k
h)
[Wh,fk ]|Fh,k−1

]
= Eξh∼πk

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]
, (C.22)
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where ξh = (xh, ah, bh, rh, xh+1), and that

V[W k
h,f |Fh,k−1] ≤ 4B2

fE[Xk
h,f |Fh,k−1] = 4B2

fEξh∼πk

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]
. (C.23)

By applying Lemma D.2, (C.22), and (C.23), we can obtain that with probability at least 1− δ, for any f ∈ H,
(h, k) ∈ [H]× [K],∣∣∣∣∣

k−1∑
s=1

W s
h,f −

k−1∑
s=1

Eξh∼πk

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]∣∣∣∣∣ ≲ 4B2

f log(HK|Hh||Hh+1|/δ)

+

√√√√log(HK|Hh||Hh+1|/δ) ·
k−1∑
s=1

Eξh∼πs

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]
.

Rearranging terms, we have that with probability at least 1−δ, for any (fh, fh+1) ∈ H×Hh+1, (h, k) ∈ [H]×[K],

−
k−1∑
s=1

W s
h,f ≲ 4B2

f log(HK|Hh||Hh+1|/δ)−
k−1∑
s=1

Eξh∼πs

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]

+

√√√√log(HK|Hh||Hh+1|/δ) ·
k−1∑
s=1

Eξh∼πs

[
(Qh,f (xh, ah, bh)−Qh,f∗(xh, ah, bh))

2
]

≲ 8B2
f log(HK|Hh||Hh+1|/δ),

where in the second inequality we use the fact that −x2 + ax ≤ a2/4. Thus, with probability at least 1 − δ,
for any k ∈ [K], it holds that

H∑
h=1

Lk−1
h (f∗) =

H∑
h=1

(
k−1∑
s=1

(
Qh,f∗(xsh, a

s
h, b

s
h)− rsh − Vh+1,f∗(xsh+1)

)2
− inf

fh∈Hh

k−1∑
s=1

(
Qh,f (x

s
h, a

s
h, b

s
h)− rsh − Vh+1,f∗(xsh+1)

)2)

=

H∑
h=1

sup
fh∈Hh

k−1∑
s=1

−W s
h,f ≲ 8HB2

f log(HK/δ) + 16B2
f log(|H|).

This finishes the proof of Lemma C.4.

Finally, combining (C.20) and Lemma C.4, we have, with probability at least 1− δ, for any f ∈ H, k ∈ [K],

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πs[ℓfs(f ; ξh)] + 16HB2
f log(HK/δ) + 32B2

f log(|H|).

This finishes the proof of the first inequality in Proposition 6.8. In the following, we prove the second inequality
in Proposition 6.8. To this end, we define the following random variable, for any f, g ∈ H and policy µf ,

Xk
h,g,µf

=
(
Qh,g(x

k
h, a

k
h, b

k
h)− rkh − V

µf ,†
h+1,g(x

k
h+1)

)2
−
(
V

µf ,†
h+1,g(x

k
h+1)− Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[V

µf ,†
h+1,g(xh+1)]

)2
. (C.24)

After a calculation similar to (B.10) and (B.11), we can derive that

Exk
h+1∼Ph(·|xk

h,a
k
h,b

k
h)
[Xk

h,g,µf
] =

(
Qh,g(x

k
h, a

k
h, b

k
h)− rkh − Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[V

µf ,†
h+1,g(xh+1)]

)2
.
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Following the same argument as in the previous proof of the first inequality of Proposition 6.8 (see (C.15) and
(C.16)), using the definition of ℓµ in (6.22), we can derive that, under filtration defined in (C.14),

E[Xk
h,f |Fh,k−1] = Eξh∼πk [ℓgk,µf

(g; ξh)], V[Xk
h,f |Fh,k−1] ≤ 4B2

fEξh∼πk [ℓgk,µf
(g; ξh)]. (C.25)

Using (C.25) and Lemma D.2, we can obtain that with probability at least 1 − δ, for any (h, k) ∈ [H] × [K]
and (gh, gh+1, fh+1) ∈ Hh ×Hh+1 ×Hh+1

7,∣∣∣∣∣
k−1∑
s=1

Eξh∼πs [ℓgs,µf
(g; ξh)]−

k−1∑
s=1

Xs
h,g,µf

∣∣∣∣∣ ≲ 1

2

k−1∑
s=1

Eξh∼πs [ℓgs,µf
(g; ξh)] + 16B2

f log(HK|Hh|2|Hh+1|/δ). (C.26)

Rearranging terms in (C.26), we can further obtain that

−
k−1∑
s=1

Xs
h,g,µf

≲ −1

2

k−1∑
s=1

Eξh∼πs [ℓgs,µf
(g; ξh)] + 16B2

f log(HK|Hh|2|Hh+1|/δ). (C.27)

Meanwhile, by the definition of Xh,f in (C.24) and the loss function L in (6.15), we have that

k−1∑
s=1

Xs
h,g,µf

=

k−1∑
s=1

(
Qh,g(x

s
h, a

s
h, b

s
h)− rsh − V

µf ,†
h+1,g(x

s
h+1)

)2
−

k−1∑
s=1

(
V

µf ,†
h+1,g(x

s
h+1)− Exh+1∼Ph(·|xs

h,a
s
h,b

s
h)
[V

µf ,†
h+1,g(xh+1)]

)2
=

k−1∑
s=1

(
Qh,g(x

s
h, a

s
h, b

s
h)− rsh − V

µf ,†
h+1,g(x

s
h+1)

)2
−

k−1∑
s=1

(
T µf

h g(xsh, a
s
h, b

s
h)− rsh − V

µf ,†
h+1,g(x

s
h+1)

)2
≤

k−1∑
s=1

(
Qh,g(x

s
h, a

s
h, b

s
h)− rsh − V

µf ,†
h+1,g(x

s
h+1)

)2
− inf

f ′
h∈Hh

k−1∑
s=1

(
Qh,f ′(xsh, a

s
h, b

s
h)− rsh − V

µf ,†
h+1,g(x

s
h+1)

)2
= Lk−1

h,µf
(f). (C.28)

where the last inequality follows from the completeness assumption (Assumption 6.4). Combining (C.27) and
(C.28), we can derive that with probability at least 1− δ, for any f, g ∈ H, k ∈ [K],

−
H∑

h=1

Lk−1
h,µf

(f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µf
(g; ξh)] + 16HB2

f log(HK/δ) + 48B2
f log(|H|). (C.29)

Especially, we take f = fk, we can obtain that with probability at least 1− δ, for any g ∈ H, k ∈ [K],

−
H∑

h=1

Lk−1
h,µk(f) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πs [ℓgs,µk(g; ξh)] + 16HB2
f log(HK|H|/δ) + 48B2

f log(|H|). (C.30)

Finally, we deal with the term Lk
h(f

∗). To this end, we invoke the following lemma.

Lemma C.5. With probability at least 1− δ, it holds that for each k ∈ [K],

H∑
h=1

Lk−1
h,µk(Q

µk,†) ≲ 16HB2
f log(HK/δ) + 48B2

f log(|H|).

Proof of Lemma C.5. To prove Lemma C.5, we define the following random variable,

W k
h,g,µf

=
(
Qh,g(x

k
h, a

k
h, b

k
h)− rkh − V

µf ,†
h+1 (xkh+1)

)2
−
(
Q

µf ,†
h (xkh, a

k
h, b

k
h)− rkh − V

µf ,†
h+1 (xkh+1)

)2
,

7Note that ℓgs,µf
(g; ξh) and V

µf ,†
h+1,g depend on f only through fh+1.
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for any f, g ∈ H. Using the Bellman equation for Qµf ,†, i.e.,

Q
µf ,†
h (xkh, a

k
h, b

k
h) = rkh + Exh+1∼Ph(·|xk

h,a
k
h,b

k
h)
[V

µf ,†
h+1 (xh+1)]

we can calculate that

Exk
h+1∼Ph(·|xk

h,a
k
h,b

k
h)
[W k

h,g,µf
] =

(
Qh,g(x

k
h, a

k
h, b

k
h)−Q

µf ,†
h (xkh, a

k
h, b

k
h)
)2
. (C.31)

Under the filtration {Fh,k}Kk=1 defined in the proof of Proposition 6.8, i.e, (C.14), we can derive that

E[W k
h,g,µf

|Fh,k−1] = Eξh∼πk

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]
, (C.32)

V[W k
h,g,µf

|Fh,k−1] ≤ 4B2
fEξh∼πk

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]
. (C.33)

Using Lemma D.2, (C.32), (C.33), we have that, with probability at least 1 − δ, for any (h, k) ∈ [H] × [K],
(gh, gh+1, fh, fh+1) ∈ Hh ×Hh+1 ×Hh ×Hh+1,∣∣∣∣∣

k−1∑
s=1

W s
h,g,µf

−
k−1∑
s=1

Eξh∼πk

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]∣∣∣∣∣ ≲ 8B2
f log(HK|Hh|2|Hh+1|2/δ)

+

√√√√log(HK|Hh|2|Hh+1|2/δ) ·
k−1∑
s=1

Eξh∼πs

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]
.

Rearranging terms, we have that with probability at least 1− δ,

−
k−1∑
s=1

W s
h,g,µf

≲ 8B2
f log(HK|Hh|2|Hh+1|2/δ)−

k−1∑
s=1

Eξh∼πs

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]

+

√√√√log(HK|Hh|2|Hh+1|2/δ) ·
k−1∑
s=1

Eξh∼πs

[(
Qh,g(xh, ah, bh)−Q

µf ,†
h (xh, ah, bh)

)2]
≲ 16B2

f log(HK|Hh|2|Hh+1|2/δ),

where in the second inequality we use the fact that −x2 + ax ≤ a2/4. Now we take f = fk, which gives that
with probability at least 1− δ, for any k ∈ [K], it holds that

H∑
h=1

Lk−1
h,µk(Q

µk,†) =

H∑
h=1


k−1∑
s=1

Qh,Qµk,†(x
s
h, a

s
h, b

s
h)︸ ︷︷ ︸

=Qµk,†
h (xs

h,a
s
h,b

s
h)

−rsh − V µk,†
h+1,Qµk,†(x

s
h+1)︸ ︷︷ ︸

=V µk,†
h+1 (xs

h+1)


2

− inf
gh∈Hh

k−1∑
s=1

Qh,g(x
s
h, a

s
h, b

s
h)− rsh − V µk,†

h+1,Qµk,†(x
s
h+1)︸ ︷︷ ︸

=V µk,†
h+1 (xs

h+1)


2

=

H∑
h=1

sup
gh∈Hh

k−1∑
s=1

−W s
h,g,µk ≲ 16HB2

f log(HK/δ) + 64B2
f log(|H|).

This finishes the proof of Lemma C.5.

Finally, combining (C.30) and Lemma C.5, we have, with probability at least 1− δ, for any g ∈ H, k ∈ [K],

H∑
h=1

Lk−1
h,µk(Q

µk,†)− Lk−1
h,µk(g) ≲ −1

2

H∑
h=1

k−1∑
s=1

Eξh∼πs[ℓgs,µk(g; ξh)] + 32HB2
f log(HK|H|/δ) + 112B2

f log(|H|).

This finishes the proof of the second inequality in Proposition 6.8 and completes the proof of Proposition 6.8.
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D Technical Lemmas

Lemma D.1 (Martingale exponential inequality). For a sequence of real-valued random variables {Xt}t≤T

adapted to a filtration {Ft}t≤T , the following holds with probability at least 1− δ, for any t ∈ [T ],

−
t∑

s=1

Xs ≤
t∑

s=1

logE[exp(−Xs)|Fs−1] + log(1/δ).

Proof of Lemma D.1. See e.g., Theorem 13.2 of Zhang (2022b) for a detailed proof.

Lemma D.2 (Freedman’s inequality). Let {Xt}t≤T be a real-valued martingale difference sequence adapted to
filtration {Ft}t≤T . If |Xt| ≤ R almost surely, then for any η ∈ (0, 1/R) it holds that with probability at least
1− δ,

T∑
t=1

Xt ≤ O

(
η

T∑
t=1

E[X2
t |Ft−1] +

log(1/δ)

η

)
.

Proof of Lemma D.2. See Freedman (1975) for a detailed proof.

Lemma D.3 (Elliptical potential). Let {xs}s∈[K] be a sequence of vectors with xs ∈ V for some Hilbert space

V. Let Λ0 be a positive definite matrix and define Λk = Λ0 +
∑k

s=1 xsx
⊤
s . Then it holds that

K∑
s=1

min
{
1, ∥xs∥Λ−1

s

}
≤ 2 log

(
det(ΛK+1)

det(Λ1)

)
.

Proof of Lemma D.3. See Lemma 11 of Abbasi-Yadkori et al. (2011) for a detailed proof.

E Experiment Settings

Our experiments utilize 8 NVIDIA GeForce 1080Ti GPUs and 4 NVIDIA A6000 GPUs. Each result is averaged
over five random seeds.

E.1 Implementation Details of MEX-MF

Below, we describe the detailed implementation of the model-free algorithm MEX-MF. We select η′ to be 1e−3 for
sparse-reward tasks and 5e−4 for standard gym tasks since dense reward tasks require less exploration. Other
parameters are kept the same with the baseline Fujimoto et al. (2018) across all domains and are summarized
as in Table 1.

E.2 Implementation Details of MEX-MB

When employing the model-based algorithm MEX-MB, we configured the parameter η′ as 1e−4 for the Hopper-v2
and hopper-vel tasks, and 1e−3 for all other tasks. The hyper-parameters are kept the same with the MBPO
baseline Janner et al. (2019) across all domains and are summarized as in Table 2.
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Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
TD3+BC parameter α 2.5

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

Table 1: Hyper-parameters sheet of MEX-MF.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Model learning rate 1e-3
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
SAC updates per step 40

Architecture Value

Critic hidden layers 3
Critic activation function ReLU
Actor hidden layers 2
Actor activation function ReLU
Model hidden dim 200
Model hidden layers 4
Model activation function SiLU

Table 2: Hyper-parameters sheet of MEX-MB.

E.3 Tabular Experiments

We also conduct experiments in tabular MDPs. Specifically, we evaluate MEX-MB and MnM (Eysenbach et al.,
2022) in a 10x10 gridworld with stochastic dynamics and sparse reward functions. As illustrated in Figure
3, the stochastic gridworld environment is associated with a navigation task to reach the red star from the
initial upper left cell position. The action space contains four discrete actions, corresponding to moving to
the four adjacent cells. The transition noise moves the agent to neighbor states with equal probability. The
black region represents the obstacle that the agent cannot enter. The agent receives a +0.001 reward at every
timestep and a +10 when reaching the goal state. Each episode has 200 timesteps. The performance results
are shown in Figure 4.

Figure 3: Illustration of the stochastic gri-
world environment (Eysenbach et al., 2022).
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Figure 4: Model-based MEX-MB in the stochastic gridworld
environment.
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