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Motivation and Observations

Our Key Message

The oscillation prevents the over-greedy convergence and serves as
the engine that drives the learning of less-prominent data pattern.

Large learning rate NN Training can result in better generalization. But why?
» Small LR training: curve is much smoother, converges more rapidly.
* Allow for all useful data patterns to be discovered and learned :)

> Large LR training: an “oscillating” training curve, but better generalization! < . These data patterns are beneficial for the NN to generalize to unseen datal!
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* Division for generalization by different learning rates.

# epochs # epochs What is the mechanism behind?

ResNet-18 on CIFAR-10: Small LR v.s. Large LR

Theoretical Demonstration and Finding

» Experimental verification
lllustrative setup: single data with two patches

» Why oscillation helps? A dynamic analysis
Strong signal oscillation:

» Strong feature v.s. Weak feature Model

« Strong feature patch: with probability 1 — p, this patch is the _ _
|  SGD with large learning rate:
strong feature y - u, otherwise this patch is a random noise €.
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Strong data:
* Has strong/weak feature [

+ Only appear with probability 1 — eI e

 Weak signal learning:

Weak data: f f
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Longer oscillation implies larger
weak signal learning
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strong featkure! Loss func’tion:L(w)=(f(w;x)—l)2
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Network on strong data with label 1:

This explains why SGD with large LR can generalize better!

* Oscillation occurs.
* Both strong and weak features are learned.

 SGD with small learning rate:
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» Convergence is smooth.
* Only strong feature is learned.



