Benign Oscillation of Stochastic Gradient Descent with Large Learning Rate

Motivation and Observations

Large learning rate NN Training can result in better generalization. But why?

- Small LR training: curve is much smoother, converges more rapidly.
- Large LR training: an "oscillating" training curve, but better generalization!

Strong feature v.s. Weak feature Model

- **Strong feature patch:** with probability 1ρ , this patch is strong feature $y \cdot \mathbf{u}$, otherwise this patch is a random noise
- **Weak feature patch:** always taken by the weak feature y
- **Random noise patch:** random Gaussian noise $\boldsymbol{\xi}$ is randor sampled for the remaining patches

Strong data:

- Has strong/weak feature
- Only appear with probability 1ρ

Weak data:

- Only has weak feature
- Every data has the weak feature

To generalize to **all** new data points, the NN must effectively learn the weak feature patch in face of the strong feature!

	a − 5° − − 1° − − 1° − 1° − 1° − 1° − 1°	Standarf (an in Cine Connect Stand

Random noise

noise

Network on strong data with labe

$$f(\mathbf{w};\mathbf{x}) = \sum_{r=1}^{m} \sigma(\langle \mathbf{w}_r, \mathbf{u} \rangle) + \sigma(\langle \mathbf{w}_r, \mathbf{v} \rangle) +$$

Loss function: $L(\mathbf{w}) = (f(\mathbf{w}; \mathbf{x}) - 1)^2$

Miao Lu¹, Beining Wu², Xiaodong Yang³, and Difan Zou⁴

Oscillation during training can be closely tied to better generalization of SGD with Large LR!

What is the mechanism behind?

Our Main Contributions:

- \bullet
- A new theoretical argument for feature learning driven by oscillation.
- Division for generalization by different learning rates.

Theoretical Demonstration and Finding

Why oscillation helps? A dynamic analysis

• Strong signal oscillation:
•
$$\sum_{s \in \delta^{-}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(s)}, \mathbf{u} \rangle \approx \sum_{s \in \delta^{+}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(s)}, \mathbf{u} \rangle$$

• **v**.
• **Accumulation of negative updates**
Since larger $\langle \mathbf{w}^{(s)}, \mathbf{u} \rangle$ implies larger $f(\mathbf{w}^{(s)}; \mathbf{x})$, we have
 $\sum_{s=t_{0}}^{t_{1}} (1 - f(\mathbf{w}^{(s)}); \mathbf{x}) = \Omega(\delta) \cdot (t_{1} - t_{0}))$ Oscillation
accumulates
• **Weak signal learning:**
 $\sum_{s=t_{0}}^{t_{1}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(s)}, \mathbf{v} \rangle \approx \sum_{s=t_{0}}^{t_{1}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(t_{0})}, \mathbf{v} \rangle$
e ξ
Longer oscillation implies larger
weak signal learning:
 $\sum_{s=t_{0}}^{t_{1}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(s)}, \mathbf{v} \rangle \approx \sum_{s=t_{0}}^{t_{1}} (1 - f(\mathbf{w}^{(s)}; \mathbf{x})) \cdot \langle \mathbf{w}_{r}^{(t_{0})}, \mathbf{v} \rangle$
E 1:
• **Division of generalization properties**

- **SGD**, large LR: learns both strong/weak features.
- SGD, small LR: only learns the strong feature.

This explains why SGD with large LR can generalize better!

Our Key Message

The oscillation prevents the over-greedy convergence and serves as the engine that drives the learning of less-prominent data pattern.

Allow for all useful data patterns to be discovered and learned :) These data patterns are beneficial for the NN to generalize to unseen data! We refer to such a phenomenon as "benign oscillation".

Dynamic analysis framework for SGD with large learning rates.

Experimental verification

Illustrative setup: single data with two patches

SGD with large learning rate:

Both strong and weak features are learned.

SGD with small learning rate:

- Convergence is smooth.
- **Only** strong feature is learned.