MIAO LU

Tel: 650-250-9790 | E-mail: miaolu@stanford.edu | Web: miaolu3.github.io

Stanford University	Stanford, USA
Ph.D. student in Operations Research, Department of Management Science & Engineering	2023 - present
University of Science and Technology of China	Hefei, China
B.S. in Mathematics and Applied Mathematics, summa cum laude	2018 - 2022

Research Interests

My research interests are primarily in designing and analyzing both *robust* and *efficient* machine learning methods, with a special focus on theoretical foundations. With such a goal, I work broadly across the theory and application of reinforcement learning and deep learning. Currently I'm also interested in large language models and its interaction with decision making.

PUBLICATIONS

EDUCATION

[7] Benign Oscillation of Stochastic Gradient Descent with Large Learning Rates
Miao Lu^{*}, Beining Wu^{*}, Xiaodong Yang, Difan Zou
International Conference on Learning Representations (ICLR) 2024
NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning (M3L)

[6] Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage

Jose Blanchet[†], Miao Lu[†], Tong Zhang[†], Han Zhong[†] Neural Information Processing Systems (**NeurIPS**) 2023 Extended version *under review at* Mathematics of Operations Research (**MOR**)

[5] Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration Zhihan Liu*, Miao Lu*, Wei Xiong*, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, Zhaoran Wang Neural Information Processing Systems (NeurIPS) 2023, Spotlight

[4] Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes

Miao Lu, Yifei Min, Zhaoran Wang, Zhuoran Yang International Conference on Learning Representations (**ICLR**) 2023

[3] Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy Zhihan Liu^{*}, Miao Lu^{*}, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang International Conference on Machine Learning (**ICML**) 2022

[2] Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, and No Retraining Miao Lu^{*}, Xiaolong Luo^{*}, Tianlong Chen, Wuyang Chen, Dong Liu, Zhangyang Wang International Conference on Learning Representations (**ICLR**) 2022, **Spotlight**

[1] Learning Robust Policy against Disturbance in Transition Dynamics via State-Conservative Policy Optimization Yufei Kuang, Miao Lu, Jie Wang, Qi Zhou, Bin Li, Houqiang Li Association for Advancement of Artificial Intelligence (AAAI) 2022

(Note: authors with * contributed equally to the work, and [†] represents alphabetical order.)

EXPERIENCES

University of Hong Kong, Department of Computer Science and Institute of Data Science	Hong Kong SAR, China
Research assistant hosted by Prof. Difan Zou, working on deep learning theory	Apr.2023 - Aug.2023
Ubiquant Investment , AI Department	Shanghai, China
Quantitative research intern, applying deep learning techniques in quantitative trading tasks	Jun.2022 - Sep.2022
Awards and Honors	
The 41st Guo Moruo Scholarship (highest honor and scholarship from USTC)	Dec.2021

The 41st Guo Moruo Scholarship (highest honor and scholarship from USTC)Dec.2021Chinese National Scholarship (highest scholarship from Ministry of Education of China)Nov.2019, 2020

INVITED TALKS

INFORMS annual meeting (invited presentation on publication [6])