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Backgrounds

** Pruning is a commonly used way of DNN compression,
» e.q., for deploying your model across platforms with
different hardware performances.

+* Usually, modern DNN pruning techniques require retraining
or fine-tuning to obtain the compressed network.
» huge computational cost
» sensitive to retraining parameters

+* Question:whether we can design an efficient pruning
method that does not need retrain the neural network.



Our Contributions

** We propose SFW(stochastic Frank-Wolfe)-pruning, a one-
shot unstructured pruning algorithm, which can guarantee
consistent and competitive model performance under
varying pruning ratios without retraining.

*¢* We customize a meta-learning-based initialization scheme
for SFW-based DNN training, leading to more consistent and

competitive performance under varying pruning ratios.

X Empirical demonstrations.



Motivations & Methodology

+** Idea: cast the DNN training as an explicit pruning-aware
process, which actively enhances important weights and
pushes less important weights smaller.

+** To this end, we add an auxiliary K-sparse polytope constraint
in training the training objective'
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% solve the constrained OPT via Stochastic Frank-Wolfe (SFW).



Motivations & Methodology

*$* Why K-sparse polytope constraint? The optimization process
of SFW for K-sparse polytope constraint is ideal for our goal!

’:’ Update I’U|e:0t+1 = Gt + Oét(’Ut — 9,5) = V¢ + (]. — Oét)et . Hel'e Uy
solves a linear minimization oracle, arg ming,ec (Vo L(0;),v) ,
which has closed form solution:

(0); = — 7 -sign((m);) if (m); is in the largest K coordinates of m,
Yi= 0 otherwise,



Motivations & Methodology

** Each step is equivalent to K “votes” on the weights to select
important weights. Important weights are enhanced and less
important weights are averaged with O.

** Resulting in more smaller weights (but not exactly zero), and
less large ones. This yields competitive test accuracies across
the spectrum of pruning ratios, even without retraining.
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Motivations & Methodology

** Algorithm: SFW-Pruning,
» One-shot SFW-training + Magnitude Unstructured Pruning
» Achieving consistent and competitive model performance
under varying pruning ratios without retraining.

** Algorithm: SFW-INIT,
> An initialization scheme tailored for SFW-training
» Learning-based: learn the best initialization that allows the
maximum loss reduction in the first SFW step.

» Further boosting pruning test performance across
different pruning ratios.



Experimental Results

*$* Unstructured pruning NN with different sparsity ratios without retraining
» SFW-pruning significantly outperforms magnitude-based and
random pruning by SGD, across different datasets and architectures.
» Over a wide range of sparsity ratios, SFW can keep pruning while
maintaining a highly competitive performance.
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Experimental Results

** SFW-pruning with and without SFWInit
» SFW + SFWInit consistently achieves higher accuracies compared
with SFW across different datasets and architectures.
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Experimental Results
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Pruning Ratios 50% 70% 80% 90% 95%
SFW-Pruning (ours) 93.10 93.10 93.10 93.10 92.00
One-Cycle Pruning (Hubens et al., 2021) - - 90.87 90.72 90.67
Early Bird (You et al., 2019) 932 928 - - -
OTO (Chen et al., 2021) 90.35 90.35 90.35 90.35 90.35
DPF (Lin et al., 2020) - - - - 93.87
Group MDP (Deleu & Bengio, 2021) - - - 89.38 -







