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Exchange Economy and Social Welfare Maximization

In exchange economy (EE), a set of rational agents with
individual initial endowments allocate and exchange a finite
set of valuable resources based on a common price system.

The target of EE is to achieve Competitive Equilibrium (CE),
where all agents maximize their own utilities under their
budget constraint.

When each agent within a system is to myopically maximize
its own utility at each step, a central planner is introduced to
steer the system so as to achieve Social Welfare Maximization
(SWM).
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Reinforcement Learning

Agent

Environment

Action at
Reward rt = r(st, at)

Next state st+1

The agent aims to learn a policy π which maximizes its state
value function V π

1 (s1) at the first step and the initial state s1.

State value function V π
h (s) = Eπ[

∑H
h=1 r(sh, ah) | sh = s].
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Challenges

Problem formulation and optimality characterization of a
dynamic bilevel economic system involving both EE and
SWM.

Exploration-exploitation tradeoff in online learning and
distribution shift in offline learning.

Adoption of general function approximation.
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Main Contribution

We propose a new economic system known as Markovian
Exchange Economy (MEE) and define a suboptimality
function for the planner and the agents.

For online and offline MEE, we design MARL-style algorithms,
proving the online regret and the offline suboptimality,
respectively.
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Markovian Exchange Economy (MEE)

A finite horizon MEE consists of N agents, one social planner,
and H time steps.

Each state sh consists a context ch and endowments eh.

The joint actions of the agents consist the allocations for each
agent and the price for the exchange.

Interaction Protocol: At each time step h ∈ [H], the agents
and the planner observe state skh ∈ S and pick their own
actions akh and bkh. Then the next state is generated by the
environment skh+1 ∼ Ph(· | skh, bkh) and they observe the

utilities {uk,(i)h }i∈[N ] with u
k,(i)
h = u

(i)
h (skh, x

k,(i)
h ) from the

environment.
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Characterization of Optimality

Agent policy ν : S 7→ A, s 7→ (ν(1)(s), · · · , ν(N)(s), νp(s)).

Optimality: one-step competitive equilibrium (Definition 2.2).

Characterized by a fixed-point formulation for value functions
(Theorem 2.4).

Planner policy π : S 7→ B, s 7→ π(s).

Optimality: maximize social welfare (sum of utilities).

Characterized by another fixed-point formulation for value
functions (Theorem 2.6).

Joint optimality: policy pair (π⋆, ν⋆) satisfying competitive
equilibrium and social welfare maximization simultaneously.

Planner’s policy π is coupled with agents’ policy ν.

Fixed-point formulation (Theorem 2.7) ⇒ Suboptimality of
any policy pair (π, ν), denoted by SubOpt(ν, π).
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Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm design (two steps):

Model estimation step: construct confidence sets Uk
h for

utility functions and Pk
h for transition kernels using data from

previous k − 1 episodes.

We use value targeted regression (VTR, Ayoub et al., 2020)
for transition estimation.

Optimistic planning step: use Uk
h and Pk

h to perform
optimistic planning to approximate the joint optimal policy:

νkh(s) = CE({ûk,(i)h (s, ·)}i∈[N ]),

πk
h(s) = argmax

b∈B

N∑
i=1

ˆ
S
V

k,(i)
h+1 (s′)P̂ k

h (ds
′|s, b),

where ûkh ∈ Uk
h and P̂ k

h ∈ Pk
h are optimistic estimations.
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Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm analysis:

Online regret for K episodes:

RegretCE,SWM(K) =

K∑
k=1

SubOpt(πk, νk).

Sublinear regret of MOLM algorithm:

RegretCE,SWM(K) ∈ Õ(H2N
√
dK),

where H is the horizon, N is the number of agents, d is the
eluder dimension of the function classes for general function
approximations (Russo & Van Roy, 2013).

Achieving Õ(
√
K)-regret which is sublinear: MOLM efficiently

finds the jointly optimal policy (π⋆, ν⋆) approximately.

The key to achieve such regret is using the optimistic principle
for exploration in uncertain environments.
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Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm design (two steps):

Model estimation step: construct confidence sets Uh for
utility functions and Ph for transition kernels using previously
collected offline data only.

Pessimistic policy optimization step: use Uh and Ph to
perform pessimistic policy optimization to approximate the
joint optimal policy:

ν̂h(s) = CE({û(i)h (s, ·)}i∈[N ]),

(π̂, P̂ ) = argmax
π∈Π

min
P̂ :{P̂h∈Ph,ξ2

,∀h∈[H]}

N∑
i=1

V̂
(π,ν̂),(i)

1,(P̂ ,û)
(s1),

where ûh ∈ Uh and P̂h ∈ Ph are pessimistic estimations.
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Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm analysis:

Offline suboptimality of MPLM algorithm:

SubOpt(π̂, ν̂) ∈ Õ(H2N
√
C⋆ι/K).

where H is the horizon, N is the number of agents, ι is the
covering number of the function classes for general function
approximations.

C⋆ is the concentrability coefficient between data D and joint
optimal policy (π⋆, ν⋆). Due to the use of pessimism principle,
we only require the data to cover the joint optimal policy
(partial coverage, rather than full coverage).

Achieving Õ(1/
√
K)-suboptimality: MPLM efficiently finds

the jointly optimal policy (π⋆, ν⋆) approximately.
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Thank You!
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