Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

> Zhihan Liu¹, Miao Lu², Zhaoran Wang¹, Michael Jordan ³, and Zhuoran Yang⁴

¹Northwestern University ²University of Science and Technology of China, ³UC Berkeley, ⁴Yale University

June 7, 2023

1 Background

2 Challenges and Contribution

3 Markovian Exchange Economy

4 Online Learning for Markov Exchange Economy

5 Offline Learning for Markov Exchange Economy

Exchange Economy and Social Welfare Maximization

- In exchange economy (EE), a set of rational agents with individual initial endowments allocate and exchange a finite set of valuable resources based on a common price system.
- The target of EE is to achieve Competitive Equilibrium (CE), where all agents maximize their own utilities under their budget constraint.
- When each agent within a system is to myopically maximize its own utility at each step, a central planner is introduced to steer the system so as to achieve Social Welfare Maximization (SWM).

Reinforcement Learning

- The agent aims to learn a policy π which maximizes its state value function V₁^π(s₁) at the first step and the initial state s₁.
 State where function V^π(s₁) = E⁻¹
- State value function $V_h^{\pi}(s) = \mathbb{E}_{\pi}[\sum_{h=1}^H r(s_h, a_h) \mid s_h = s].$

2 Challenges and Contribution

- 3 Markovian Exchange Economy
- 4 Online Learning for Markov Exchange Economy
- 5 Offline Learning for Markov Exchange Economy

Challenges

- Problem formulation and optimality characterization of a dynamic bilevel economic system involving both EE and SWM.
- Exploration-exploitation tradeoff in online learning and distribution shift in offline learning.
- Adoption of *general function approximation*.

Main Contribution

- We propose a new economic system known as Markovian Exchange Economy (MEE) and define a suboptimality function for the planner and the agents.
- For online and offline MEE, we design MARL-style algorithms, proving the online regret and the offline suboptimality, respectively.

2 Challenges and Contribution

3 Markovian Exchange Economy

4 Online Learning for Markov Exchange Economy

5 Offline Learning for Markov Exchange Economy

Markovian Exchange Economy (MEE)

- A finite horizon MEE consists of N agents, one social planner, and H time steps.
- Each state s_h consists a context c_h and endowments e_h .
- The joint actions of the agents consist the allocations for each agent and the price for the exchange.
- Interaction Protocol: At each time step $h \in [H]$, the agents and the planner observe state $s_h^k \in S$ and pick their own actions a_h^k and b_h^k . Then the next state is generated by the environment $s_{h+1}^k \sim P_h(\cdot \mid s_h^k, b_h^k)$ and they observe the utilities $\{u_h^{k,(i)}\}_{i \in [N]}$ with $u_h^{k,(i)} = u_h^{(i)}(s_h^k, x_h^{k,(i)})$ from the environment.

Characterization of Optimality

Agent policy $\nu : S \mapsto A, s \mapsto (\nu^{(1)}(s), \cdots, \nu^{(N)}(s), \nu^{\mathbf{p}}(s)).$

- Optimality: one-step *competitive equilibrium* (Definition 2.2).
- Characterized by a fixed-point formulation for value functions (Theorem 2.4).
- Planner policy $\pi : S \mapsto B, s \mapsto \pi(s)$.
 - Optimality: *maximize social welfare* (sum of utilities).
 - Characterized by another fixed-point formulation for value functions (Theorem 2.6).

Joint optimality: policy pair (π^*, ν^*) satisfying *competitive equilibrium* and *social welfare maximization* simultaneously.

- Planner's policy π is coupled with agents' policy ν .
- Fixed-point formulation (Theorem 2.7) \Rightarrow Suboptimality of any policy pair (π, ν) , denoted by SubOpt (ν, π) .

1 Background

- 2 Challenges and Contribution
- 3 Markovian Exchange Economy

4 Online Learning for Markov Exchange Economy

5 Offline Learning for Markov Exchange Economy

Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm design (two steps):

- Model estimation step: construct confidence sets U^k_h for utility functions and P^k_h for transition kernels using data from previous k − 1 episodes.
- We use value targeted regression (VTR, Ayoub et al., 2020) for transition estimation.
- Optimistic planning step: use U_h^k and P_h^k to perform optimistic planning to approximate the joint optimal policy:

$$\nu_h^k(s) = \operatorname{CE}(\{\widehat{u}_h^{k,(i)}(s,\cdot)\}_{i\in[N]}),$$

$$\pi_h^k(s) = \operatorname*{arg\,max}_{b\in\mathcal{B}} \sum_{i=1}^N \int_{\mathcal{S}} V_{h+1}^{k,(i)}(s') \widehat{P}_h^k(\mathrm{d}s'|s,b),$$

where $\widehat{u}_{h}^{k} \in \mathcal{U}_{h}^{k}$ and $\widehat{P}_{h}^{k} \in \mathcal{P}_{h}^{k}$ are optimistic estimations.

Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm analysis:

• Online regret for *K* episodes:

$$\operatorname{Regret}_{\mathsf{CE},\mathsf{SWM}}(K) = \sum_{k=1}^{K} \operatorname{SubOpt}(\pi^k, \nu^k).$$

Sublinear regret of MOLM algorithm:

 $\operatorname{Regret}_{\mathsf{CE},\mathsf{SWM}}(K) \in \widetilde{\mathcal{O}}(H^2N\sqrt{dK}),$

where H is the horizon, N is the number of agents, d is the eluder dimension of the function classes for general function approximations (Russo & Van Roy, 2013).

- Achieving $\widetilde{\mathcal{O}}(\sqrt{K})$ -regret which is sublinear: MOLM efficiently finds the jointly optimal policy $(\pi^{\star}, \nu^{\star})$ approximately.
- The key to achieve such regret is using the optimistic principle for exploration in uncertain environments.

1 Background

- 2 Challenges and Contribution
- 3 Markovian Exchange Economy
- 4 Online Learning for Markov Exchange Economy
- 5 Offline Learning for Markov Exchange Economy

Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm design (two steps):

- Model estimation step: construct confidence sets U_h for utility functions and P_h for transition kernels using previously collected offline data only.
- Pessimistic policy optimization step: use U_h and P_h to perform pessimistic policy optimization to approximate the joint optimal policy:

$$\begin{split} \widehat{\nu}_h(s) &= \mathsf{CE}(\{\widehat{u}_h^{(i)}(s,\cdot)\}_{i\in[N]}), \\ (\widehat{\pi},\widehat{P}) &= \arg\max_{\pi\in\Pi}\min_{\widehat{P}:\{\widehat{P}_h\in\mathcal{P}_{h,\xi_2},\forall h\in[H]\}}\sum_{i=1}^N\widehat{V}_{1,(\widehat{P},\widehat{u})}^{(\pi,\widehat{\nu}),(i)}(s_1), \\ \text{where } \widehat{u}_h\in\mathcal{U}_h \text{ and } \widehat{P}_h\in\mathcal{P}_h \text{ are pessimistic estimations.} \end{split}$$

...

Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm analysis:

Offline suboptimality of MPLM algorithm:

 $\mathrm{SubOpt}(\widehat{\pi},\widehat{\nu})\in\widetilde{\mathcal{O}}(H^2N\sqrt{C^{\star}\iota/K}).$

where H is the horizon, N is the number of agents, ι is the covering number of the function classes for general function approximations.

- C* is the concentrability coefficient between data D and joint optimal policy (π*, ν*). Due to the use of pessimism principle, we only require the data to cover the joint optimal policy (partial coverage, rather than full coverage).
- Achieving $\widetilde{\mathcal{O}}(1/\sqrt{K})$ -suboptimality: MPLM efficiently finds the jointly optimal policy $(\pi^{\star}, \nu^{\star})$ approximately.

