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Offline Reinforcement Learning

Offline RL: learning optimal decisions from fixed offline datasets

Offline RL has achieved great success in various domains, but ...

Challenge: Sim-to-Real Gap
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Challenge: Sim-to-Real Gap

A general problem: mismatch between the dynamics of training and testing environments:

PTrain Env.(·) ̸= PTest Env.(·)

Non-robust offline RL methods will fail to generalize to testing environments :(

Solution: (distributionally) robust offline RL

▶ Takes the discrepancy between training and testing environments into account :)

▶ Seeks to find an optimal decision policy that is robust to the worst case testing environment.

▶ Mathematically, combines the framework of

– Distributionally robust optimization (DRO)

– Markov decision process (MDP)
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A Review of Standard Offline RL

Offline RL uses the framework of Markov decision process (MDP): M = (S,A, H,P⋆, R).

▶ We consider a finite-horizon decision process.

▶ P⋆ = {P⋆
h}h∈[H] and R = {Rh}h∈[H].

Interaction protocol: an agent interacts with M in the form of episodes (H steps). In each episode:

▶ at each step h ∈ [H], the agent observes a state sh ∈ S, and takes an action ah ∈ A.

▶ the env. transits to sh+1 ∼ P⋆
h(·|sh, ah), and the agent receives reward rh = Rh(sh, ah).

▶ the episode ends after H decision steps.

rh−1
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A Review of Standard Offline RL

Goal of offline RL: given an offline dataset D with N trajectories (episodes):

D =
{(

sτh, a
τ
h, r

τ
h, s

τ
h+1

)}
h∈[H],τ∈[N ]

aτ
h ∼ πb

h(·|sτh), sτh+1 ∼ P⋆
h(·|sτh, aτ

h)

find the optimal policy π⋆ = {π⋆
h : S 7→ A}h∈[H] that maximizes expected total reward:

π⋆ ∈ argmax
π={πh}h∈[H]:πh:S7→A

V π
1 (s1;P⋆)

▶ The total reward of π from step h:

V π
h (sh;P⋆) := Eπ,P⋆

[
H∑

h′=h

Rh′(sh′ , ah′)

∣∣∣∣∣sh; ah′ ∼ πh′(·|sh′), sh′+1 ∼ P⋆
h′(·|sh′ , ah′)

]

▶ No interaction with the real environment, only have D.

▶ The policy is evaluated on the same dynamics P⋆ as the data generation process!
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A Unified Framework of Robust Offline RL

Robust offline RL considers the discrepancy between training and testing environments.

It uses the framework of robust Markov decision process (RMDP):

MΦ = (S,A, H,P⋆, R,Φ)

▶ Φ denotes the robust set of transition dynamics,

▶ Interpretations of P⋆ and Φ:

– P⋆: the dynamic of the training environment (nominal transition kernel).

– P′ ∈ Φ: a possible dynamic of the testing environments.

▶ Ususally, Φ is a “ball of distribution” centered at P⋆.

– e.g., ϕ-divergence ball, wasserstein ball.
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A Unified Framework of Robust Offline RL

Goal of robust offline RL: given an offline dataset collected from environment P⋆:

D =
{(

sτh, a
τ
h, r

τ
h, s

τ
h+1

)}
h∈[H],τ∈[N ]

aτ
h ∼ πb

h(·|sτh), sτh+1 ∼ P⋆
h(·|sτh, aτ

h)

find the optimal robust policy π⋆ = {π⋆
h : S 7→ A}h∈[H] that maximizes the robust expected total

rewards:

π⋆ ∈ argmax
π={πh}h∈[H]:πh:S7→A

min
P′={P′

h
}h∈[H]:P′h∈Φ

V π
1 (s1;P′)

▶ V π
1 (sh;P′) is same defined as in MDP, but now π⋆ maximizes the worst case value.

▶ No access to data from P′ ∈ Φ. Only have D collected from P⋆.

The policy is evaluated on the worst case dynamics P′ ∈ Φ of the testing environments!
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Questions:

Q1: Is there a principled way to obtain optimal sample efficiency for robust offline RL under

minimal data assumptions?

A1: Yes! “Double pessimism” is the answer.

Q2: Can this principle lead to a generic algorithm in the context of

large state space and function approximation?

A2: Yes! Our algorithm “Doubly Pessimistic Model-based Policy Optimization” (P2MPO).
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More Detailed Setups

▶ For simplicity, we assume that the reward function R is known to the learner.

▶ Robust mapping Φ : P 7→ 2P , with P := {Ph(·|·, ·) : S ×A 7→ ∆(S)}.

– Φ(Ph) is the robust set of Ph ∈ P.

▶ Robust value functions: we define for each P = {Ph}h∈[H] ⊂ P and policy π,

V π
h,P,Φ(s) := min

P′h∈Φ(Ph)
1≤h≤H

Eπ,P′

[
H∑

h′=h

Rh′(sh′ , ah′)

∣∣∣∣∣sh; ah′ ∼ πh′(·|sh′), sh′+1 ∼ P′
h′(·|sh′ , ah′)

]
,

▶ Formally, the goal is to find a policy π̂ from D that minimizes its suboptimality gap from π⋆:

SubOpt(π̂; s1) := V π⋆

1,P,Φ(s1)− V π̂
1,P,Φ(s1),

Here π⋆ is the optimal robust policy (for simplicity, we assume a fixed s1 ∈ S).
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Main Challenges

Distributional shifts from two souces:

▶ The mismatch between the training environment P⋆
h and the testing environment P′ ∈ Φ(P⋆

h).

– we only have data from P⋆, but we need to evaluate on distributions induced by P′.

▶ The mismatch between the behavior policy πb and the target policies π̂ to be learned.

– we only have data from πb, but we need to evaluate on distributions induced by learned π̂.

Large state space S:
▶ The state space can be infinite in general, where existing methods for tabular RMDPs fail.
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Pessimism: Handling Distributional Shifts

In standard offline RL, we have one source of distributional shift:

▶ The mismatch between the behavior policy πb and the target policies π̂ to be learned.

▶ A naive attempt would require the data to cover the distributions induced by all possible policy π̂.

▶ The solution: being “pessimism” in the face of data uncertainty that originates from the statistical

estimation of the transition kernel P⋆ [Jin et al., 2021, Uehara and Sun, 2021].

▶ With pessimism, one can efficiently learn the optimal policy with only “partial coverage data” –

only covering the trajectories induced by the optimal policy π⋆ (the mininal assumption).
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Double Pessimism: Handling Coupled Distributional Shifts

In robust offline RL, we have two coupled sources of distributional shift (P⋆ vs P′ ∈ Φ, and πb vs π̂).

▶ Solution: “double pessimism”

– pessimism in the face of data uncertainty which originates from statistical estimation of the

nominal transition kernel P⋆;

– pessimism in the face of testing env. uncertainty which comes from the target of finding a

robust policy against the worst case testing env. P′ ∈ Φ(P⋆).

▶ However, Φ(P) relies on P

– the double pessimism is coupled.

– perform pessimism in an iterated manner!
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Algorithm Framework: P2MPO

Algorithm 1: Doubly Pessimistic Model-based Policy Optimization (P2MPO)

1. Model estimation step:

Obtain a confidence region P̂ = ModelEst(D,P) of P⋆.

2. Doubly pessimistic policy optimization step:

Set the policy π̂ as

π̂ = argmax
π

JPess2(π)

where JPess2(π) is defined as a doubly pessimistic value estimator:

JPess2(π) := min
Ph∈P̂h
1≤h≤H

min
P′h∈Φ(Ph)
1≤h≤H

V π
1 (s1;P′)

▶ One can realize P2MPO by specifying the subalgorithm ModelEst(D,P) for concrete RMDPs.
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Main Assumption: Robust Partial Coverage Data

dπP,h(s, a): the state-action visitation measure at step h induced by policy π in dynamic P.

Assumption 1 (Robust partial coverage data).

We assume that the following robust partial coverage coefficient is finite:

C⋆
P⋆,Φ := max

1≤h≤H
max

Ph∈Φ(P⋆h)
1≤h≤H

E
(s,a)∼dπ

b

P⋆,h

[(
dπ

⋆

P,h(s, a)

dπ
b

P⋆,h(s, a)

)2]
< +∞, (1)

▶ This only requires that the offline data dπ
b

P⋆ can cover the trajectories induced by the optimal robust

policy dπ
⋆

P (for each P ∈ Φ(P⋆)).

▶ Weaker and more practical than offline data from generative model or uniformly lower bounded

distribution over (s, a).
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Main Result: Suboptimality of P2MPO

Theorem 1 (Suboptimality of P2MPO).

Under Assumptions 1 and certain rectangular assumption on RMDP, if P2MPO implements the

sub-algorithm ModelEst(D,P) with accuracy ErrΦ(N, δ), then with probability at least 1− 2δ,

SubOpt(π̂; s1) ≤
√

C⋆
P⋆,Φ ·

H∑
h=1

√
ErrΦh (N, δ).

▶ ErrΦh (N, δ) typically achieves a rate of Õ(N−1) (see our paper for sub-agorithm design)

⇒ P2MPO enjoys Õ(N−1/2)-suboptimality which is optimal in the number of samples N .

▶ In tabular setups, the dependence on C⋆
P⋆,Φ is proven inevitable [Shi et al., 2022].
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⇒ P2MPO enjoys Õ(N−1/2)-suboptimality which is optimal in the number of samples N .

▶ In tabular setups, the dependence on C⋆
P⋆,Φ is proven inevitable [Shi et al., 2022].

16 / 19



Our theory applies to most of known tractable RMDPs for robust offline RL and new models by:

▶ implementing the model estimation subroutine ModelEst(D,P);

▶ specifying the robust model estimation accuracy ErrΦh (N, δ).

▶ only require “robust partial coverage data”

Zhou et al. [2021] Shi and Chi [2022] Ma et al. [2022] This Work

S ×A-rectangular tabular RMDP ✓! ✓ ✗ ✓

d-rectangular linear RMDP ✗ ✗ ✓ ✓

S ×A-rectangular factored RMDP ✗ ✗ ✗ ✓

S ×A-rectangular kernel RMDP ✗ ✗ ✗ ✓

S ×A-rectangular neural RMDP ✗ ✗ ✗ ✓

S ×A-rectangular general RMG NA NA NA ✓

Table: ✓: can tackle this model with robust partial coverage data, ✓!: requires full coverage data to
solve the model, ✗: cannot tackle the model.

The yellow line denotes the models that are first proposed or proved tractable in this work.
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Thank You!

Blanchet, J., Lu, M., Zhang, T., & Zhong, H. (2023). Double pessimism is provably efficient for

distributionally robust offline reinforcement learning: Generic algorithm and robust partial coverage.

https://arxiv.org/abs/2305.09659
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