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Challenge: Sim-to-Real Gap

A general problem: mismatch between the dynamics of training and testing environments:

]P)Train Env. () ‘7é IEDTest Env.(')

Non-robust offline RL methods will fail to generalize to testing environments :(

Solution: (distributionally) robust offline RL
» Takes the discrepancy between training and testing environments into account :)
» Seeks to find an optimal decision policy that is robust to the worst case testing environment.
» Mathematically, combines the framework of

— Distributionally robust optimization (DRO)
— Markov decision process (MDP)

4/19



A Review of Standard Offline RL

Offline RL uses the framework of Markov decision process (MDP): M = (S, A, H,P* R).
» We consider a finite-horizon decision process.
| 4 ]P* = {PZ}hE[H] and R = {Rh}he[H]-
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A Review of Standard Offline RL

Offline RL uses the framework of Markov decision process (MDP): M = (S, A, H,P* R).
» We consider a finite-horizon decision process.
| 4 ]P* = {PZ}hE[H] and R = {Rh}hE[H]-

Interaction protocol: an agent interacts with M in the form of episodes (H steps). In each episode:
> at each step h € [H], the agent observes a state s, € S, and takes an action aj, € A.
> the env. transits to sp4+1 ~ P} (-|sh, an), and the agent receives reward r, = Ry (sn,an).

» the episode ends after H decision steps.
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A Review of Standard Offline RL
Goal of offline RL: given an offline dataset D with N trajectories (episodes):

D:{sT an, T, Sh } a, (st st Py (-|sh, ar,
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D:{ST an, T, Sh } a, (st st Py (-|sh, ar,
( hyQhsTh; h+1) helH] re(N] h Nﬂ'h(‘ h)7 h4+1 ™ h(| ho h)

find the optimal policy 7* = {n}; : S = A}pc(m] that maximizes expected total reward:

= arg max Vi (s1;P%)
m={mp}he[H)TH:S—A

» The total reward of 7 from step h:

H

Z Rh’(sh’7 ah/)

h'/=h

Vit (sp; P*) 1= Ep pr

sn; apt ~ T (-[Spr ), Shigr ~ Pro (< she, anr)

» No interaction with the real environment, only have D.

» The policy is evaluated on the same dynamics P* as the data generation process!
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A Unified Framework of Robust Offline RL

Robust offline RL considers the discrepancy between training and testing environments.

It uses the framework of robust Markov decision process (RMDP):
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» & denotes the robust set of transition dynamics,
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A Unified Framework of Robust Offline RL

Robust offline RL considers the discrepancy between training and testing environments.

It uses the framework of robust Markov decision process (RMDP):

Mas = (S, A, H,P* R, ®)

» & denotes the robust set of transition dynamics,
» Interpretations of P* and ®:

— P*: the dynamic of the training environment (nominal transition kernel).
— P’ € ®: a possible dynamic of the testing environments.

» Ususally, ® is a “ball of distribution” centered at P*.

— e.g., ¢-divergence ball, wasserstein ball.
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A Unified Framework of Robust Offline RL

Goal of robust offline RL: given an offline dataset collected from environment P*:

D:{ T T T T } T b eT T ]P;* T T
(5h7ah77nh75h+1) helH]+€[N] ahNﬂ'h( |Sh)7 Sh+41 ™ h( |3h7ah)

find the optimal robust policy 7* = {7}, : S — A}x¢[m) that maximizes the robust expected total
rewards:

e arg max min Vi (s1; )

m={mp}he[H]TH:S—A P/:{P%}he[H] PLED

» V" (sp;P') is same defined as in MDP, but now m* maximizes the worst case value.
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A Unified Framework of Robust Offline RL

Goal of robust offline RL: given an offline dataset collected from environment P*:

D:{ST an,Th, Sh } ap ~ wh(|sh sh Py (-|sp, ar,
(Sh,ah,Thy Sht1) P h~Th(lsh),  Sher ~ Ph(¢|sh, an)

find the optimal robust policy 7* = {7}, : S — A}x¢[m) that maximizes the robust expected total
rewards:

= arg max min Vi (s1; )

":{Wh}he[H] S A ]P/:{]Pgl}he[H] :P;le'i’

» V" (sp;P') is same defined as in MDP, but now m* maximizes the worst case value.

» No access to data from P’ € ®. Only have D collected from P*.
The policy is evaluated on the worst case dynamics P’ € ® of the testing environments!

8/19



Questions:

Q1: Is there a principled way to obtain optimal sample efficiency for robust offline RL under
minimal data assumptions?

Q2: Can this principle lead to a generic algorithm in the context of
large state space and function approximation?
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Questions:

Q1: Is there a principled way to obtain optimal sample efficiency for robust offline RL under
minimal data assumptions?

Al: Yes! “Double pessimism” is the answer.

Q2: Can this principle lead to a generic algorithm in the context of
large state space and function approximation?

A2: Yes! Our algorithm “Doubly Pessimistic Model-based Policy Optimization” (P?MPO).
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» For simplicity, we assume that the reward function R is known to the learner.
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More Detailed Setups

For simplicity, we assume that the reward function R is known to the learner.

» Robust mapping ® : P +— 27, with P := {Py(-|-,-) : S x A= A(S)}.

— ®(Py) is the robust set of Py, € P.

Robust value functions: we define for each P = {P, } e[z C P and policy T,

H
Vip,a(s):= min Epp Z Ry (snryans)|sns an ~ i (+[snr), Snrsr ~ Phr (|snr,ans) |
P €®(Py,) —
I<h<H h'=h

Formally, the goal is to find a policy 7 from D that minimizes its suboptimality gap from 7*:
SubOpt(7; 51) = Vilp,e (1) = Vilp,a(s1),
Here 7™ is the optimal robust policy (for simplicity, we assume a fixed s1 € S).
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Main Challenges

Distributional shifts from two souces:
» The mismatch between the training environment P} and the testing environment P’ € ®(P},).
— we only have data from P*, but we need to evaluate on distributions induced by P’.
» The mismatch between the behavior policy 7 and the target policies 7 to be learned.

— we only have data from 7, but we need to evaluate on distributions induced by learned 7.

Large state space S:

» The state space can be infinite in general, where existing methods for tabular RMDPs fail.
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Pessimism: Handling Distributional Shifts

In standard offline RL, we have one source of distributional shift:

> The mismatch between the behavior policy 7 and the target policies 7 to be learned.
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Pessimism: Handling Distributional Shifts

In standard offline RL, we have one source of distributional shift:
> The mismatch between the behavior policy 7 and the target policies 7 to be learned.
» A naive attempt would require the data to cover the distributions induced by all possible policy 7.

» The solution: being “pessimism” in the face of data uncertainty that originates from the statistical
estimation of the transition kernel P* [Jin et al., 2021, Uehara and Sun, 2021].

» With pessimism, one can efficiently learn the optimal policy with only “partial coverage data” —
only covering the trajectories induced by the optimal policy 7* (the mininal assumption).
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Double Pessimism: Handling Coupled Distributional Shifts

*

In robust offline RL, we have two coupled sources of distributional shift (P* vs P’ € ®, and 7° vs 7).

» Solution: “double pessimism”
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Double Pessimism: Handling Coupled Distributional Shifts

In robust offline RL, we have two coupled sources of distributional shift (P* vs P’ € ®, and 7° vs 7).
» Solution: “double pessimism”

— pessimism in the face of data uncertainty which originates from statistical estimation of the
nominal transition kernel P*;

— pessimism in the face of testing env. uncertainty which comes from the target of finding a
robust policy against the worst case testing env. P’ € &(P*).

» However, ®(P) relies on P

— the double pessimism is coupled.
— perform pessimism in an iterated manner!
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Algorithm Framework: P2MPO

Algorithm 1: Doubly Pessimistic Model-based Policy Optimization (P2MPO)
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Algorithm 1: Doubly Pessimistic Model-based Policy Optimization (P?MPO)

1. Model estimation step:
Obtain a confidence region P = ModelEst(D, P) of P*.

2. Doubly pessimistic policy optimization step:

Set the policy 7 as

T = arg max Jpegg2 ()
s

where Jp.s2 () is defined as a doubly pessimistic value estimator:

. . T /

Jpess2(m) == min  min V" (s;; )
PpEP Ppe®(Py)
1<h<H 1<h<H
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Algorithm Framework: P2MPO

Algorithm 1: Doubly Pessimistic Model-based Policy Optimization (P?MPO)

1. Model estimation step:

Obtain a confidence region P = ModelEst(D, P) of P*.
2. Doubly pessimistic policy optimization step:

Set the policy 7 as

T = arg max Jpegg2 ()
s

where Jp.s2 () is defined as a doubly pessimistic value estimator:

. . T /

Jpess2(m) == min  min V" (s;; )
PPy PpEe®(Ph)
1<h<H 1<h<H

» One can realize P2MPO by specifying the subalgorithm Mode1lEst (D, P) for concrete RMDPs.
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Main Assumption: Robust Partial Coverage Data
dg (s, a): the state-action visitation measure at step h induced by policy 7 in dynamic P.

Assumption 1 (Robust partial coverage data).

We assume that the following robust partial coverage coefficient is finite:

dg (s, a)

Cpv = max max E b —
: 1<h<H pre2(p;) (O~ |\ dny (s, a)

1<h<H

< +o0, (1)
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» This only requires that the offline data dﬁf can cover the trajectories induced by the optimal robust
policy i~ (for each P € &(P*)).
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Main Assumption: Robust Partial Coverage Data
dg (s, a): the state-action visitation measure at step h induced by policy 7 in dynamic P.

Assumption 1 (Robust partial coverage data).

We assume that the following robust partial coverage coefficient is finite:

dg (s, a)

Cpv = max max E b —
: 1<h<H pre2(p;) (O~ |\ dny (s, a)
1<h<H ’

< +o0, (1)

» This only requires that the offline data dﬁf can cover the trajectories induced by the optimal robust
policy i~ (for each P € &(P*)).
» Weaker and more practical than offline data from generative model or uniformly lower bounded

distribution over (s, a).
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Main Result: Suboptimality of P2MPO

Theorem 1 (Suboptimality of P?MPO).

Under Assumptions 1 and certain rectangular assumption on RMDP, if PZMPO implements the
sub-algorithm ModelEst(D, P) with accuracy Err®(IV, §), then with probability at least 1 — 25,

SubOpt(7; s1) < +/C P .® Z A/ Errg (N, 6).
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Main Result: Suboptimality of P2MPO

Theorem 1 (Suboptimality of P?MPO).

Under Assumptions 1 and certain rectangular assumption on RMDP, if PZMPO implements the
sub-algorithm ModelEst(D, P) with accuracy Err®(IV, §), then with probability at least 1 — 25,

SubOpt(7; s1) < +/C B @ Z\/Ln/, /,0).

> L (N, 0) typically achieves a rate of (5(N71) (see our paper for sub-agorithm design)
= P?MPO enjoys O(N_l/z)—suboptimality which is optimal in the number of samples V.

» In tabular setups, the dependence on Cf. 4 is proven inevitable [Shi et al., 2022].
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Our theory applies to most of known tractable RMDPs for robust offline RL and new models by:
» implementing the model estimation subroutine ModelEst(D, P);
» specifying the robust model estimation accuracy Err¥ (N, §).

» only require “robust partial coverage data”



Our theory applies to most of known tractable RMDPs for robust offline RL and new models by:
> implementing the model estimation subroutine ModelEst(D, P);
> specifying the robust model estimation accuracy Erry (N, 6).

» only require “robust partial coverage data”

Zhou et al. [2021] | Shi and Chi [2022] | Ma et al. [2022] | This Work
S x A-rectangular tabular RMDP V! v X v
d-rectangular linear RMDP X X v v
S x A-rectangular factored RMDP X X X v
S x A-rectangular kernel RMDP X X X v
S x A-rectangular neural RMDP X X X v
‘ S x A-rectangular general RMG ‘ NA ‘ NA ‘ NA ‘ v

Table: v': can tackle this model with robust partial coverage data, v'!: requires full coverage data to
solve the model, X: cannot tackle the model.

The denotes the models that are first proposed or proved tractable in this work.



Thank You!

Blanchet, J., Lu, M., Zhang, T., & Zhong, H. (2023). Double pessimism is provably efficient for
distributionally robust offline reinforcement learning: Generic algorithm and robust partial coverage.

https://arxiv.org/abs/2305.09659
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