Pessimism in the Face of Confounders Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes

Miao Lu Yifei Min Zhaoran Wang Zhuoran Yang

USTC Yale U Northwestern U Yale U

Informs 2022

November 3, 2022

Offline RL: Learn to Plan from Offline Datasets

Offline RL: Learn how to plan from an **offline dataset** collected a priori, without any interaction with the environment.

Offline Policy Learning: Learn from Given Datasets

- Offline Data: collected a priori.
- Arbitrary trajectories: actions a_h by an offline agent (unknown rule).
- No further interactions with the environment
- Learning objective: performance of the learned policy

$$\mathsf{SubOpt}(\widehat{\pi}) = \sup_{\pi^{\star} \in \Pi} J(\pi^{\star}) - J(\widehat{\pi}),$$

where Π is a policy class, $\hat{\pi} = \text{OfflineRL}(\mathcal{D}, \mathcal{F})$.

Offline Policy Learning: Learn from Given Datasets

- Offline Data: collected a priori.
- Arbitrary trajectories: actions a_h by an offline agent (unknown rule).
- No further interactions with the environment
- Learning objective: performance of the learned policy

$$\mathsf{SubOpt}(\widehat{\pi}) = \sup_{\pi^{\star} \in \Pi} J(\pi^{\star}) - J(\widehat{\pi}),$$

where Π is a policy class, $\hat{\pi} = \text{OfflineRL}(\mathcal{D}, \mathcal{F})$.

Offline RL in Partially Observable Markov Decision Processes

Episodic Markov Decision Process

- \triangleright S: infinite state space. A: finite action space.
- Unknown reward function $r_h : S \times A \rightarrow [0, 1]$.
- Unknown transition kernel $\mathbb{P}_h(\cdot | x, a) \in \Delta(\mathcal{S})$.
- Finite horizon H: terminate when h = H.

Episodic MDP

- (Markovian) policy: $\pi = {\pi_h}_{h \in [H]} : S \to \Delta(A), a_h \sim \pi_h(s_h).$
- Observations: trajectory $\{(s_h, a_h, r_h), h \in [H]\}$.
- Expected total reward: $J(\pi, x) = \mathbb{E}_{\pi}[\sum_{h=1}^{H} r_h | s_1 = x] \in [0, H].$

POMDP: "States" are Latent in MDP

• Latent state: $\{s_h\}_{h \in [H]}$ is unobserved.

- We observe an observation o_h ~ O_h(o | s_h) ∈ Δ(O) emitted from latent state s_h.
- Observations: trajectory $\{(o_h, a_h, r_h), h \in [H]\}$.

▶ Reduced to Hidden Markov Model when $\{a_h\}_{h \in [H]}$ is fixed.

Partial observability breaks Markov property

 \implies Consider history-dependent policy classes

History-Dependent Policy Class

• Observation after *h*-th step (partial trajectory): $\{(o_1, a_1), \cdots, (o_h, a_h)\}$

• History structure $\mathcal{H} = {\mathcal{H}_h}_{h=0}^{H-1}$:

- each element $au_h \in \mathcal{H}_h$ is a (partial) trajectory
- $\tau_h \subseteq \{(o_1, a_1), \cdots, (o_h, a_h)\}$
- \mathcal{H}_{h-1} reflects how much history we can look back into when determining a_h
- \mathcal{H}_{h-1} reflects memory constraint, chosen by algorithm, fixed

• \mathcal{H} -dependent policy $\Pi(\mathcal{H})$:

$\pi \in \Pi(\mathcal{H}): \quad \pi_h(\cdot | o, \tau) : \mathcal{O} \times \mathcal{H}_{h-1} \mapsto \Delta(\mathcal{A}), \, \forall h \in [H]$

Goal: for a given \mathcal{H} , find the optimal $\pi^{\star} \in \Pi(\mathcal{H})$

$$\pi^* \in \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} J(\pi) \coloneqq \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} \mathbb{E}_{\pi} \left[\sum_{h=1}^{H} \gamma^{h-1} R_h(S_h, A_h) \right]$$

History-Dependent Policy Class

- Observation after *h*-th step (partial trajectory): $\{(o_1, a_1), \cdots, (o_h, a_h)\}$
- History structure $\mathcal{H} = {\mathcal{H}_h}_{h=0}^{H-1}$:
 - each element $au_h \in \mathcal{H}_h$ is a (partial) trajectory
 - $\tau_h \subseteq \{(o_1, a_1), \cdots, (o_h, a_h)\}$
 - \mathcal{H}_{h-1} reflects how much history we can look back into when determining a_h
 - \mathcal{H}_{h-1} reflects memory constraint, chosen by algorithm, fixed
- \mathcal{H} -dependent policy $\Pi(\mathcal{H})$:

$$\pi \in \Pi(\mathcal{H}): \quad \pi_h(\cdot | o, \tau) : \mathcal{O} \times \mathcal{H}_{h-1} \mapsto \Delta(\mathcal{A}), \ \forall h \in [H]$$

Goal: for a given \mathcal{H} , find the optimal $\pi^* \in \Pi(\mathcal{H})$

$$\pi^* \in \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} J(\pi) \coloneqq \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} \mathbb{E}_{\pi} \left[\sum_{h=1}^{H} \gamma^{h-1} R_h(S_h, A_h) \right]$$

History-Dependent Policy Class

- Observation after *h*-th step (partial trajectory): $\{(o_1, a_1), \cdots, (o_h, a_h)\}$
- History structure $\mathcal{H} = {\mathcal{H}_h}_{h=0}^{H-1}$:
 - each element $au_h \in \mathcal{H}_h$ is a (partial) trajectory
 - $\tau_h \subseteq \{(o_1, a_1), \cdots, (o_h, a_h)\}$
 - \mathcal{H}_{h-1} reflects how much history we can look back into when determining a_h
 - \mathcal{H}_{h-1} reflects memory constraint, chosen by algorithm, fixed
- \mathcal{H} -dependent policy $\Pi(\mathcal{H})$:

$$\pi \in \Pi(\mathcal{H}): \quad \pi_h(\cdot | o, \tau): \mathcal{O} \times \mathcal{H}_{h-1} \mapsto \Delta(\mathcal{A}), \ \forall h \in [H]$$

Goal: for a given \mathcal{H} , find the optimal $\pi^{\star} \in \Pi(\mathcal{H})$

$$\pi^{\star} \in \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} J(\pi) \coloneqq \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} \mathbb{E}_{\pi} \left[\sum_{h=1}^{H} \gamma^{h-1} R_h(S_h, A_h) \right]$$

Examples of $\Pi(\mathcal{H})$

In our work, we consider three kinds of $\ensuremath{\mathcal{H}}$

- ▶ Reactive policy [Azizzadenesheli et al., 2018]: $H_h = \{\emptyset\}$
- ▶ Finite-history policy [Efroni et al., 2022]: $\mathcal{H}_h = (\mathcal{O} \times \mathcal{A})^{\otimes \min\{k,h\}}$
- ▶ Hull-history policy [Liu et al., 2022]: $\mathcal{H}_h = (\mathcal{O} \times \mathcal{A})^{\otimes h}$

Figure: Reactive policy

Figure: Finite-history policy

Figure: Full-history policy

Recap: Markov Policy and History-Dependent Policy

- Markov policy: $\pi = {\pi_h}_{h \in [H]}$
 - $\pi_h(\cdot|s) \colon \mathcal{S} \to \Delta(\mathcal{A})$
 - Have access to the latent state s_h (unobserved)
 - π induces a Markov chain $\{(s_h, a_h, o_h)\}_{h \in [H]}$
- History-dependent policy: $\pi = {\pi_h}_{h \in [H]}$
 - $-\pi_h(\cdot|o,\tau):\mathcal{O}\times\mathcal{H}_{h-1}\mapsto\Delta(\mathcal{A}),\,\forall h\in[H]$
 - ${\cal H}_{h-1}$ reflects the memory size and complexity of π
 - $-\pi$ only involve observable quantities
- Goal: learn the optimal history-dependent policy within $\Pi(\mathcal{H})$.

Recap: Markov Policy and History-Dependent Policy

- Markov policy: $\pi = {\pi_h}_{h \in [H]}$
 - $\pi_h(\cdot|s) \colon \mathcal{S} \to \Delta(\mathcal{A})$
 - Have access to the latent state s_h (unobserved)
 - π induces a Markov chain $\{(s_h, a_h, o_h)\}_{h \in [H]}$
- History-dependent policy: $\pi = {\pi_h}_{h \in [H]}$
 - $\ \pi_h(\cdot|o,\tau): \mathcal{O} \times \mathcal{H}_{h-1} \mapsto \Delta(\mathcal{A}), \ \forall h \in [H]$
 - \mathcal{H}_{h-1} reflects the memory size and complexity of π
 - π only involve observable quantities
- Goal: learn the optimal history-dependent policy within $\Pi(\mathcal{H})$.

Offline RL in POMDP – Data Generation

- \blacktriangleright Offline dataset $\mathbb D$ generated by a Markovian behavior policy π^b
- Observe *n* trajectories from π^b (*n* = sample size)

$$\mathbb{D} = \left\{ (o_0^k, (o_1^k, a_1^k, r_1^k), \cdots, (o_H^k, a_H^k, r_H^k)) \right\}_{k=1}^n$$

- $\blacktriangleright \ \pi^b$ generates (s_h, a_h, o_h, r_h) at each step, but s_h is not recorded in the dataset
- Motivation:
 - Healthcare records: s: full information; a: prescription; o: record
 - Autodriving: s: visual input; a: steering wheel; o: sensor data 11/21

Three Coupled Challenges:

Confounding Issue (unique to POMDP)

Insufficient Coverage

Rich Observations

Three Coupled Challenges

Confounding bias (o and r both depend on latent state)

- $o_h \sim \mathbb{O}_h(\cdot \,|\, s_h)$
- $r_h = r_h(s_h, a_h)$
- s_h confounds r and o
- pretending o_h is state and running standard RL methods lead to bias
- ▶ Insufficient coverage (\mathcal{P}^{π^b} and \mathcal{P}^{π} ($\pi \in \Pi(\mathcal{H})$ doesn't match)
 - also known as distributional shift
 - between trajectory of π^b and a family of trajectories
 - appear in offline RL w/o partial obs.
 - existing works has proposed methods based on pessimism principle.

▶ Large observation spaces (space *O* can be large or even infinite)

Need to incorporate function approximation tools.

Three Coupled Challenges

Confounding bias (o and r both depend on latent state)

- $o_h \sim \mathbb{O}_h(\cdot \,|\, s_h)$
- $r_h = r_h(s_h, a_h)$
- s_h confounds r and o
- pretending o_h is state and running standard RL methods lead to bias
- ▶ Insufficient coverage (\mathcal{P}^{π^b} and \mathcal{P}^{π} ($\pi \in \Pi(\mathcal{H})$ doesn't match)
 - also known as distributional shift
 - between trajectory of π^b and a family of trajectories
 - appear in offline RL w/o partial obs.
 - existing works has proposed methods based on pessimism principle.

► Large observation spaces (space *O* can be large or even infinite)

Need to incorporate function approximation tools.

Three Coupled Challenges

Confounding bias (o and r both depend on latent state)

- $o_h \sim \mathbb{O}_h(\cdot \mid s_h)$
- $r_h = r_h(s_h, a_h)$
- s_h confounds r and o
- pretending o_h is state and running standard RL methods lead to bias
- ▶ Insufficient coverage (\mathcal{P}^{π^b} and \mathcal{P}^{π} ($\pi \in \Pi(\mathcal{H})$ doesn't match)
 - also known as distributional shift
 - between trajectory of π^b and a family of trajectories
 - appear in offline RL w/o partial obs.
 - existing works has proposed methods based on pessimism principle.

Large observation spaces (space O can be large or even infinite)

- Need to incorporate function approximation tools.

Existing Works

Our work addresses all these challenges **simultaneously**.

- ▶ Offline RL in MDP: No partial obs. and no confouding issue.
- Online RL in POMDP: no distributional shift and confounding
- Offline Policy evaluation: easier distributional shift $(\pi^b \text{ and } \pi^e)$ and no policy learning

	Offline	Partial Obs.	Confound	Policy Opt.
Xie et al. [2021]	1	×	×	1
Uehara and Sun [2021]	1	×	×	1
Jin et al. [2020]	×	1	×	1
Liu et al. [2022]	×	1	×	1
Bennett and Kallus [2021]	1	1	1	×
Shi et al. [2021]	1	1	1	×
P30 (ours)	1	1	1	1

Our Algorithm: <u>Proxy</u> variable <u>Pessimistic Policy</u> <u>Optimization</u> (P30)

Proxy variable Pessimistic Policy Optimization (P30)

▶ Pessimistic policy optimization $\widehat{\pi} \coloneqq \arg \max_{\pi \in \Pi(\mathcal{H})} \widehat{J}_{\mathsf{Pess}}(\pi)$ - pessimism principle: $\widehat{J}_{\mathsf{Pess}}(\pi) \leq J(\pi)$ for all $\pi \in \Pi(\mathcal{H})$

Policy value identification via proximal causal inference (PCI)

- $J(\pi)$ is identified via value bridge functions $\mathbf{b}^{\pi} = \{b_h^{\pi}\}_{h \in [H]}$
- $b_h^{\pi} \colon \mathcal{H}_{h-1} \times \mathcal{O} \to [0, H]$

$$- J(\pi) = \sum_{a} b_1^{\pi}(o_1, a)$$

 $- \{b_h^\pi\}_{h\in[H]}$ satisfy Bellman-type moment equations

Minimax estimation with uncertainty quantification

- $\ b_h^\pi$'s moment equation leads to a minimax estimation loss function
- Construct a high-prob. confidence region $CR^{\pi}(\xi)$ for \mathbf{b}^{π}
- $CR^{\pi}(\xi)$ constructed via sublevel sets of loss function
- $\widehat{J}_{\mathsf{Pess}}(\pi) = \inf_{\mathbf{b} \in \mathrm{CR}^{\pi}(\xi)} \sum_{a} b_1(o_1, a)$

Proxy variable Pessimistic Policy Optimization (P30)

• Pessimistic policy optimization $\widehat{\pi} \coloneqq \arg \max_{\pi \in \Pi(\mathcal{H})} \widehat{J}_{\mathsf{Pess}}(\pi)$

- pessimism principle: $\widehat{J}_{\text{Pess}}(\pi) \leq J(\pi)$ for all $\pi \in \Pi(\mathcal{H})$

Policy value identification via proximal causal inference (PCI)

– $J(\pi)$ is identified via value bridge functions $\mathbf{b}^{\pi} = \{b_h^{\pi}\}_{h \in [H]}$

$$- b_h^{\pi} \colon \mathcal{H}_{h-1} \times \mathcal{O} \to [0, H]$$

$$- J(\pi) = \sum_{a} b_1^{\pi}(o_1, a)$$

- $\{b_h^{\pi}\}_{h\in[H]}$ satisfy Bellman-type moment equations

Minimax estimation with uncertainty quantification

- $\ b_h^\pi$'s moment equation leads to a minimax estimation loss function
- Construct a high-prob. confidence region $\mathrm{CR}^\pi(\xi)$ for \mathbf{b}^π
- $CR^{\pi}(\xi)$ constructed via sublevel sets of loss function
- $\widehat{J}_{\mathsf{Pess}}(\pi) = \inf_{\mathbf{b} \in \mathrm{CR}^{\pi}(\xi)} \sum_{a} b_1(o_1, a)$

Proxy variable Pessimistic Policy Optimization (P30)

• Pessimistic policy optimization $\widehat{\pi} \coloneqq \arg \max_{\pi \in \Pi(\mathcal{H})} \widehat{J}_{\mathsf{Pess}}(\pi)$

- pessimism principle: $\widehat{J}_{\text{Pess}}(\pi) \leq J(\pi)$ for all $\pi \in \Pi(\mathcal{H})$

Policy value identification via proximal causal inference (PCI)

- $J(\pi)$ is identified via value bridge functions $\mathbf{b}^{\pi} = \{b_h^{\pi}\}_{h \in [H]}$

$$- b_h^{\pi} \colon \mathcal{H}_{h-1} \times \mathcal{O} \to [0, H]$$

$$- J(\pi) = \sum_{a} b_1^{\pi}(o_1, a)$$

- $\{b_h^{\pi}\}_{h\in[H]}$ satisfy Bellman-type moment equations

Minimax estimation with uncertainty quantification

- b_h^{π} 's moment equation leads to a minimax estimation loss function
- Construct a high-prob. confidence region $\mathrm{CR}^\pi(\xi)$ for \mathbf{b}^π
- $CR^{\pi}(\xi)$ constructed via sublevel sets of loss function
- $\widehat{J}_{\text{Pess}}(\pi) = \inf_{\mathbf{b} \in \operatorname{CR}^{\pi}(\xi)} \sum_{a} b_1(o_1, a)$

P30: Pessimistic Policy Optimization

P30 outputs the policy that maximizes the pessimistic estimator of $J(\pi)$:

$$\widehat{\pi} \coloneqq \operatorname*{arg\,max}_{\pi \in \Pi(\mathcal{H})} \widehat{J}_{\mathsf{Pess}}(\pi), \quad \text{where} \quad \widehat{J}_{\mathsf{Pess}}(\pi) = \min_{\mathbf{b} \in \operatorname{CR}^{\pi}(\xi)} \Bigl\{ \sum_{a \in \mathcal{A}} b_1(o_1, a) \Bigr\}$$

- Policy evaluation) Construct confidence region CR^π(ξ) for the value bridge function {b^π_h}^H_{h=1} via minimax estimation.
- (Policy optimization) Choose $\hat{\pi}$ that maximizes the pessimistic value estimator $\hat{J}_{\text{Pess}}(\pi)$.

P30: Pessimistic Policy Optimization

P30 outputs the policy that maximizes the pessimistic estimator of $J(\pi)$:

$$\widehat{\pi} \coloneqq \underset{\pi \in \Pi(\mathcal{H})}{\arg \max} \ \widehat{J}_{\mathsf{Pess}}(\pi), \quad \text{where} \quad \widehat{J}_{\mathsf{Pess}}(\pi) = \underset{\mathbf{b} \in \mathrm{CR}^{\pi}(\xi)}{\min} \Big\{ \sum_{a \in \mathcal{A}} b_1(o_1, a) \Big\}$$

- Policy evaluation) Construct confidence region CR^π(ξ) for the value bridge function {b^π_h}^H_{h=1} via minimax estimation.
- (Policy optimization) Choose $\hat{\pi}$ that maximizes the pessimistic value estimator $\hat{J}_{\text{Pess}}(\pi)$.

Thank You!

Paper: Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes arxiv:2205.13589

References I

- K. Azizzadenesheli, Y. Yue, and A. Anandkumar. Policy gradient in partially observable environments: Approximation and convergence. arXiv preprint arXiv:1810.07900, 2018.
- A. Bennett and N. Kallus. Proximal reinforcement learning: Efficient off-policy evaluation in partially observed markov decision processes. arXiv preprint arXiv:2110.15332, 2021.
- Y. Efroni, C. Jin, A. Krishnamurthy, and S. Miryoosefi. Provable reinforcement learning with a short-term memory. <u>arXiv preprint</u> arXiv:2202.03983, 2022.
- C. Jin, S. Kakade, A. Krishnamurthy, and Q. Liu. Sample-efficient reinforcement learning of undercomplete pomdps. <u>Advances in Neural</u> Information Processing Systems, 33:18530–18539, 2020.

References II

- Q. Liu, A. Chung, C. Szepesvári, and C. Jin. When is partially observable reinforcement learning not scary? <u>arXiv preprint arXiv:2204.08967</u>, 2022.
- W. Miao, Z. Geng, and E. J. Tchetgen Tchetgen. Identifying causal effects with proxy variables of an unmeasured confounder. <u>Biometrika</u>, 105(4):987–993, 2018.
- C. Shi, M. Uehara, and N. Jiang. A minimax learning approach to off-policy evaluation in partially observable markov decision processes. arXiv preprint arXiv:2111.06784, 2021.
- M. Uehara and W. Sun. Pessimistic model-based offline rl: Pac bounds and posterior sampling under partial coverage. <u>arXiv e-prints</u>, pages arXiv–2107, 2021.

References III

T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal.
Bellman-consistent pessimism for offline reinforcement learning.
Advances in neural information processing systems, 34, 2021.