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Offline RL: Learn to Plan from Offline Datasets

Offline RL: Learn how to plan from an offline dataset collected a priori,
without any interaction with the environment.

images from internet sources.
2 / 21



Offline Policy Learning: Learn from Given Datasets

▶ Offline Data: collected a priori.
▶ Arbitrary trajectories: actions ah by an offline agent (unknown rule).
▶ No further interactions with the environment
▶ Learning objective: performance of the learned policy

SubOpt(π̂) = sup
π⋆∈Π

J(π⋆)− J(π̂),

where Π is a policy class, π̂ =OfflineRL(D,F).
3 / 21



Offline Policy Learning: Learn from Given Datasets

▶ Offline Data: collected a priori.
▶ Arbitrary trajectories: actions ah by an offline agent (unknown rule).
▶ No further interactions with the environment
▶ Learning objective: performance of the learned policy

SubOpt(π̂) = sup
π⋆∈Π

J(π⋆)− J(π̂),

where Π is a policy class, π̂ =OfflineRL(D,F).
3 / 21



Offline RL in Partially Observable
Markov Decision Processes

4 / 21



Episodic Markov Decision Process

▶ S: infinite state space. A: finite action space.
▶ Unknown reward function rh : S ×A → [0, 1].
▶ Unknown transition kernel Ph(· |x, a) ∈ ∆(S).
▶ Finite horizon H: terminate when h = H.
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Episodic MDP

▶ (Markovian) policy: π = {πh}h∈[H] : S → ∆(A), ah ∼ πh(sh).
▶ Observations: trajectory {(sh, ah, rh), h ∈ [H]}.
▶ Expected total reward: J(π, x) = Eπ[

∑H
h=1 rh | s1 = x] ∈ [0, H].
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POMDP: ”States” are Latent in MDP

▶ Latent state: {sh}h∈[H] is unobserved.
▶ We observe an observation oh ∼ Oh(o | sh) ∈ ∆(O) emitted from latent

state sh.
▶ Observations: trajectory {(oh, ah, rh), h ∈ [H]}.
▶ Reduced to Hidden Markov Model when {ah}h∈[H] is fixed.

Partial observability breaks Markov property
=⇒ Consider history-dependent policy classes
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History-Dependent Policy Class
▶ Observation after h-th step (partial trajectory): {(o1, a1), · · · , (oh, ah)}
▶ History structure H = {Hh}H−1

h=0 :
– each element τh ∈ Hh is a (partial) trajectory
– τh ⊆ {(o1, a1), · · · , (oh, ah)}
– Hh−1 reflects how much history we can look back into when

determining ah

– Hh−1 reflects memory constraint, chosen by algorithm, fixed
▶ H-dependent policy Π(H):

π ∈ Π(H): πh(·|o, τ) : O ×Hh−1 7→ ∆(A), ∀h ∈ [H]

Goal: for a given H, find the optimal π⋆ ∈ Π(H)

π⋆ ∈ argmax
π∈Π(H)

J(π) := argmax
π∈Π(H)

Eπ

[
H∑

h=1

γh−1Rh(Sh, Ah)

]
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Examples of Π(H)

In our work, we consider three kinds of H
▶ Reactive policy [Azizzadenesheli et al., 2018]: Hh = {∅}
▶ Finite-history policy [Efroni et al., 2022]: Hh = (O ×A)⊗min{k,h}

▶ Hull-history policy [Liu et al., 2022]: Hh = (O ×A)⊗h

Figure: Reactive policy Figure: Finite-history policy

Figure: Full-history policy 9 / 21



Recap: Markov Policy and History-Dependent Policy

▶ Markov policy: π = {πh}h∈[H]

– πh(·|s) : S → ∆(A)

– Have access to the latent state sh (unobserved)
– π induces a Markov chain {(sh, ah, oh)}h∈[H]

▶ History-dependent policy: π = {πh}h∈[H]

– πh(·|o, τ) : O ×Hh−1 7→ ∆(A), ∀h ∈ [H]

– Hh−1 reflects the memory size and complexity of π
– π only involve observable quantities

▶ Goal: learn the optimal history-dependent policy within Π(H).
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Offline RL in POMDP – Data Generation

▶ Offline dataset D generated by a Markovian behavior policy πb

▶ Observe n trajectories from πb (n = sample size)

D =
{
(ok0 , (o

k
1 , a

k
1 , r

k
1 ), · · · , (okH , akH , rkH))

}n

k=1

▶ πb generates (sh, ah, oh, rh) at each step, but sh is not recorded in
the dataset

▶ Motivation:
– Healthcare records: s: full information; a: prescription; o: record
– Autodriving: s: visual input; a: steering wheel; o: sensor data 11 / 21



Three Coupled Challenges:

▶ Confounding Issue (unique to POMDP)

▶ Insufficient Coverage

▶ Rich Observations
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Three Coupled Challenges

▶ Confounding bias (o and r both depend on latent state)
– oh ∼ Oh(· | sh)
– rh = rh(sh, ah)

– sh confounds r and o

– pretending oh is state and running standard RL methods lead to bias

▶ Insufficient coverage (Pπb and Pπ (π ∈ Π(H) doesn’t match)
– also known as distributional shift
– between trajectory of πb and a family of trajectories
– appear in offline RL w/o partial obs.
– existing works has proposed methods based on pessimism principle.

▶ Large observation spaces (space O can be large or even infinite)
– Need to incorporate function approximation tools.
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Existing Works

Our work addresses all these challenges simultaneously.
▶ Offline RL in MDP: No partial obs. and no confouding issue.
▶ Online RL in POMDP: no distributional shift and confounding
▶ Offline Policy evaluation: easier distributional shift (πb and πe) and

no policy learning

Offline Partial Obs. Confound Policy Opt.
Xie et al. [2021] 3 8 8 3

Uehara and Sun [2021] 3 8 8 3

Jin et al. [2020] 8 3 8 3

Liu et al. [2022] 8 3 8 3

Bennett and Kallus [2021] 3 3 3 8

Shi et al. [2021] 3 3 3 8

P3O (ours) 3 3 3 3
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Our Algorithm: Proxy variable Pessimistic Policy
Optimization (P3O)
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Proxy variable Pessimistic Policy Optimization (P3O)

▶ Pessimistic policy optimization π̂ := argmaxπ∈Π(H) ĴPess(π)

– pessimism principle: ĴPess(π) ≤ J(π) for all π ∈ Π(H)

▶ Policy value identification via proximal causal inference (PCI)
– J(π) is identified via value bridge functions bπ = {bπh}h∈[H]

– bπh : Hh−1 ×O → [0, H]

– J(π) =
∑

a b
π
1 (o1, a)

– {bπh}h∈[H] satisfy Bellman-type moment equations

▶ Minimax estimation with uncertainty quantification
– bπh’s moment equation leads to a minimax estimation loss function
– Construct a high-prob. confidence region CRπ(ξ) for bπ

– CRπ(ξ) constructed via sublevel sets of loss function
– ĴPess(π) = infb∈CRπ(ξ)

∑
a b1(o1, a)
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– pessimism principle: ĴPess(π) ≤ J(π) for all π ∈ Π(H)

▶ Policy value identification via proximal causal inference (PCI)
– J(π) is identified via value bridge functions bπ = {bπh}h∈[H]

– bπh : Hh−1 ×O → [0, H]

– J(π) =
∑

a b
π
1 (o1, a)

– {bπh}h∈[H] satisfy Bellman-type moment equations

▶ Minimax estimation with uncertainty quantification
– bπh’s moment equation leads to a minimax estimation loss function
– Construct a high-prob. confidence region CRπ(ξ) for bπ

– CRπ(ξ) constructed via sublevel sets of loss function
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P3O: Pessimistic Policy Optimization

P3O outputs the policy that maximizes the pessimistic estimator of J(π):

π̂ := argmax
π∈Π(H)

ĴPess(π), where ĴPess(π) = min
b∈CRπ(ξ)

{∑
a∈A

b1(o1, a)
}

▶ (Policy evaluation) Construct confidence region CRπ(ξ) for the
value bridge function {bπh}Hh=1 via minimax estimation.

▶ (Policy optimization) Choose π̂ that maximizes the pessimistic value
estimator ĴPess(π).

confounding bias distributional shift

Identification via PCI Minimax estimation & Uncert. Quantification

Pessimitic estimation
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Thank You!

Paper: Pessimism in the Face of Confounders: Provably Efficient Offline
Reinforcement Learning in Partially Observable Markov Decision

Processes arxiv:2205.13589
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