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Offline RL: Learn to Plan from Offline Datasets
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Offline RL: Learn how to plan from an offline dataset collected a priori,

without any interaction with the environment.

images from internet sources.
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Offline Policy Learning: Learn from Given Datasets
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» Offline Data: collected a priori.
> Arbitrary trajectories: actions ap by an offline agent (unknown rule).
» No further interactions with the environment
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Offline Policy Learning: Learn from Given Datasets
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» Offline Data: collected a priori.

> Arbitrary trajectories: actions ap by an offline agent (unknown rule).
» No further interactions with the environment

» Learning objective: performance of the learned policy

SubOpt(7) = sup J(7*) — J(7),

mrell

where II is a policy class, 7 =OfflineRL(D, F).
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Offline RL in Partially Observable
Markov Decision Processes
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Episodic Markov Decision Process

1 reward 1, = (s, a,) € [0,1]
1 next state 5,1 ~ P( - | sy, a,) €S

» S: infinite state space. A: finite action space.
» Unknown reward function r; : § x A — [0, 1].
» Unknown transition kernel Py (- | z,a) € A(S).

» Finite horizon H: terminate when h = H.
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Episodic MDP
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» (Markovian) policy: m = {mn}neimy: S = A(A), an ~ mr(sh).
» Observations: trajectory {(sn,an,7r),h € [H]}.
> Expected total reward: J(m,z) = E-[S 1, ry |51 = 2] € [0, H].
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POMDP: "States” are Latent in MDP

> Latent state: {sp}xe(m) is unobserved.

> \We observe an observation o, ~ O (o | sn) € A(O) emitted from latent
state sp,.

» Observations: trajectory {(on, an,7n), h € [H]}.

» Reduced to Hidden Markov Model when {an }ne(ay is fixed.

Partial observability breaks Markov property
= Consider history-dependent policy classes
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History-Dependent Policy Class

» Observation after h-th step (partial trajectory): {(o1,a1), -, (on,an)}
> History structure H = {Hn}5 4"
— each element 75, € H}, is a (partial) trajectory
- € {(o1,0a1), -+ ,(on,an)}
— Hp—1 reflects how much history we can look back into when
determining ap

— Hp—1 reflects memory constraint, chosen by algorithm, fixed
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» 7H-dependent policy II(H):

m € I(H): mh(-|o,7): O X Hp—1 — A(A), Vh € [H] ]
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History-Dependent Policy Class

» Observation after h-th step (partial trajectory): {(o1,a1), -, (on,an)}
> History structure H = {Hn}5 4"

— each element 75, € H}, is a (partial) trajectory

- € {(o1,0a1), -+ ,(on,an)}

— Hp—1 reflects how much history we can look back into when

determining ap

— Hp—1 reflects memory constraint, chosen by algorithm, fixed

» 7H-dependent policy II(H):

m €I(H): mr(-lo,7): O X Hp—1— A(A), Vh € [H] ]

Goal: for a given H, find the optimal 7* € TI(#H)

H

> A" Ru(Sh, An)

h=1

7" € argmax J(7) := argmaxE,
mell(H) TeIl(H)
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Examples of II(H)

In our work, we consider three kinds of H
> Reactive policy [Azizzadenesheli et al., 2018]: H;, = {0}
> Finite-history policy [Efroni et al., 2022]: Hj), = (O x A)®@ min{kh}
» Hull-history policy [Liu et al., 2022]: H;, = (O x A)®"
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Figure: Full-history policy



Recap: Markov Policy and History-Dependent Policy

» Markov policy: 7 = {7, } ne[a
- m(]s): S = A(A)
— Have access to the latent state s, (unobserved)
— m induces a Markov chain {(sn, an,0n)}neim
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Recap: Markov Policy and History-Dependent Policy

» Markov policy: 7 = {7, } ne[a
- m(]s): S = A(A)
— Have access to the latent state s, (unobserved)
— m induces a Markov chain {(sn, an,0n)}neim
» History-dependent policy: 7 = {m3}neim
= mh(-|o,7) 1 O x Hpo1 = A(A), Yh € [H]
— Hp—1 reflects the memory size and complexity of 7
— m only involve observable quantities
» Goal: learn the optimal history-dependent policy within II(#).
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Offline RL in POMDP - Data Generation

3 S 0 H > B

» Offline dataset ID generated by a Markovian behavior policy 7®

» Observe n trajectories from 7° (n = sample size)

n
D = {(of, (o}, a¥,rt), -, (ofy, afy, m§)) by

» 7° generates (s, an,on,7s) at each step, but sy, is not recorded in
the dataset
» Motivation:
— Healthcare records: s: full information; a: prescription; o: record
— Autodriving: s: visual input; a: steering wheel; o: sensor data 11/21



Three Coupled Challenges:

» Confounding Issue (unique to POMDP)
» Insufficient Coverage

» Rich Observations
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Three Coupled Challenges

» Confounding bias (o0 and r both depend on latent state)
= on ~ On(-[sn)
- Th = Th(Sh, ah)
— sk confounds r and o

— pretending oy, is state and running standard RL methods lead to bias
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— Op ~ @h( | Sh)
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— pretending oy, is state and running standard RL methods lead to bias

» Insufficient coverage (P”b and P™ (r € TI(H) doesn't match)
— also known as distributional shift
— between trajectory of 7° and a family of trajectories
— appear in offline RL w/o partial obs.

— existing works has proposed methods based on pessimism principle.
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Three Coupled Challenges

» Confounding bias (o0 and r both depend on latent state)
= on ~ On(-|sn)
- Th = rh(sh,ah)
— sy, confounds r and o
— pretending oy, is state and running standard RL methods lead to bias

» Insufficient coverage (P”b and P™ (r € TI(H) doesn't match)

— also known as distributional shift
— between trajectory of 7° and a family of trajectories
— appear in offline RL w/o partial obs.

— existing works has proposed methods based on pessimism principle.

> Large observation spaces (space O can be large or even infinite)

— Need to incorporate function approximation tools.
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Existing Works

Our work addresses all these challenges simultaneously.

» Offline RL in MDP: No partial obs. and no confouding issue.
» Online RL in POMDP: no distributional shift and confounding

> Offline Policy evaluation: easier distributional shift (7* and 7¢) and

no policy learning
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Our Algorithm: Proxy variable Pessimistic Policy
Optimization (P30)
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Proxy variable Pessimistic Policy Optimization (P30)

> Pessimistic policy optimization 7 := arg max, cp() Tpess ()

— pessimism principle: Jpess(m) < J(m) for all € TI(H)
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Proxy variable Pessimistic Policy Optimization (P30)

> Pessimistic policy optimization 7 := arg max, cp() Tpess ()

— pessimism principle: Jpess(m) < J(m) for all € TI(H)

> Policy value identification via proximal causal inference (PCl)

— J(m) is identified via value bridge functions b™ = {b } nc[n)
- bj: Hh—1 X O = [0, H]
= J(m) =2, bi(o1,a)

— {bh, }rhem) satisfy Bellman-type moment equations

» Minimax estimation with uncertainty quantification

— bj's moment equation leads to a minimax estimation loss function
— Construct a high-prob. confidence region CR™ () for b™
— CR™ (&) constructed via sublevel sets of loss function

— Jpess(m) = infpeonm(e) X, bi (o1, a)
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P30: Pessimistic Policy Optimization
P30 outputs the policy that maximizes the pessimistic estimator of J(m):

%::argmaxjp m), where jp )= min { b1 017a}
o ess(T0) ess(7) beCRT () ; ( )
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P30: Pessimistic Policy Optimization
P30 outputs the policy that maximizes the pessimistic estimator of J(m):

%::argmaxjp m), where fp m) = min { by 017a}
ﬂ,En(H) ESS( ) ESS( ) beCRW (5) ;4 ( )

» (Policy evaluation) Construct confidence region CR™ () for the

value bridge function {b7 }/L , via minimax estimation.

» (Policy optimization) Choose 7 that maximizes the pessimistic value
estimator jpess(ﬂ').

[confounding biaSJ Ejistributional shift

A

Identification via PCl Minimax estimation & Uncert. Quantificatiorﬂ
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Thank Youl

Paper: Pessimism in the Face of Confounders: Provably Efficient Offline
Reinforcement Learning in Partially Observable Markov Decision
Processes arxiv:2205.13589
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