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Abstract

Using more test-time computation during language model inference, such as generating
more intermediate thoughts or sampling multiple candidate answers, has proven effective in
significantly improving model performance. This paper takes an initial step toward bridging
the gap between practical language model inference and theoretical transformer analysis by
incorporating randomness and sampling. We focus on in-context linear regression with con-
tinuous/binary coefficients, where our framework simulates language model decoding through
noise injection and binary coefficient sampling. Through this framework, we provide detailed
analyses of widely adopted inference techniques. Supported by empirical results, our theoretical
framework and analysis demonstrate the potential for offering new insights into understanding
inference behaviors in real-world language models.
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1 Introduction

Transformer-based (Vaswani, 2017) large language models (LLMs) have demonstrated impressive
general-purpose capabilities, representing state-of-the-art architectures in natural language processing
(Dubey et al., 2024; Guo et al., 2025; Achiam et al., 2023) and increasingly in other domains such as
computer vision (Peebles and Xie, 2023; Agarwal et al., 2025). While scaling laws for LLM training
Kaplan et al. (2020) have described their performance with respect to the train-time compute (i.e.
model size, data size, and training time, e.g.), leveraging additional test-time computation of the
pretrained LLMs, such as extend reasoning length by generating additional intermediate thoughts
(Wei et al., 2022; Guo et al., 2025; OpenAI, 2024) or sampling multiple candidate answers and
aggregating to obtain the best one (Cobbe et al., 2021; Wang et al., 2023), has recently demonstrated
great potential for further enhancing their reasoning capabilities. However, despite the success of
scaling up test-time computing for LLMs, the theoretical understanding of transformer models, even
for the relatively simpler linear cases, for such successes remains quite limited.

Due to the success of LLMs itself, a huge body of recent theory works has emerged, aiming
at understanding the hidden mechanisms of transformers from other angles. These works have
been focused on seeking to explain the model’s capabilities in memorization (Mahdavi et al., 2023;
Kim et al., 2023), in-context learning (ICL) (von Oswald et al., 2023; Zhang et al., 2023; Huang
et al., 2025), function approximation power (Takakura and Suzuki, 2023; Malach, 2023), algorithm
simulation (Chen and Zou, 2024; Fu et al., 2023; Liu et al., 2024), and the training dynamics (Yang
et al., 2024; Zhang et al., 2023; Chen et al., 2024a) for transformers initialized from scratch, to name
a few. Most of these works consider simplified settings with linear attention (von Oswald et al.,
2023) and focus on how transformers can directly leverage their output activations to solve specific
tasks like in-context linear regression (Garg et al., 2023), ignoring the sampling and tokenization
procedure for LM decoding, creating substantial gaps between theoretical analysis and practical
LLM applications.

One of the main gap between prior theoretical works and LLM used in practice is that, prior
theoretical works typically focus on transformers with deterministic decoding procedures, where
the model output is fixed for a given prompt. In practice, many inference techniques for scaling up
test-time computing, such as majority voting (Wang et al., 2023), best-of-N sampling (BoN) (Cobbe
et al., 2021), and tree of thoughts (ToT) (Yao et al., 2024), rely on probabilistic sampling procedures
in real-world LLMs: given a prompt, the model predicts subsequent tokens by first computing a
distribution over potential candidates and then sampling from it. This gap between the theoretical
setups and the real-world LLM behavior hinders us towards understanding and analyzing of the
success of transformer test-time computation.

Our contributions. In this work, we aim to bridge the gap between practical language model
(probabilistic) inference and theoretical transformer analysis, providing initial theoretical insights
into transformer test-time computation. Specifically, we examine the in-context linear regression
task with continuous/binary coefficients, simulate LLMs’ sampling decoding procedure by injecting
random noise (continuous case) or conducting discrete sampling (binary case) based on the model’s
original output, using the processed tokens for subsequent sampling decoding steps. We then conduct
analysis towards test-time computation of transformers based on our theoretical framework. The
main contributions of this paper are highlighted as follows:

• We take an initial step toward bridging the gap between practical language model inference and
theoretical transformer analysis by incorporating randomness and sampling. Our framework
simulates language model decoding through noise injection and binary coefficient sampling,
exhibiting trends similar to real-world LLMs’ inference, as demonstrated in Fig 1.

• Through our framework, we conduct detailed analysis of how test-time computation plays a role
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Figure 1: Comparison between real-world LLM’s inference (above) and our designed sampling
framework (below) for different sample numbers N and reasoning lengths. Our framework simulates
language model decoding through noise injection and binary coefficient sampling, exhibiting trends
similar to real-world LLMs’ inference, Details can be found in Appendix A

in our reasoning framework, including reasoning steps and sampling number, which can be applied
to widely adopted inference techniques such as majority voting, ensembling, and chain-of-thought
prompting.

• We validate our theoretical analysis through extensive experiments. Furthermore, we attempt to
predict real-world LLM performance using our theoretical framework. The results demonstrate
the potential of applying our theoretical framework for practical LLM behavior analysis.

2 Related Works

Scaling test-time computing in LLMs. Scaling test-time computing has demonstrated tremen-
dous empirical success in LLMs, especially for reasoning tasks (OpenAI, 2024). Recent research
on increasing test-time computing in LLMs primarily focuses on the following two aspects (Snell
et al., 2024a): (i) generating longer reasoning paths, including chain-of-thought (CoT) prompting
that elicits intermediate reasoning steps (Wei et al., 2022; Kojima et al., 2022) and self-refinement
methods that iterate on previously generated content (Madaan et al., 2023; Saunders et al., 2022;
Kumar et al., 2024); and (ii) generating multiple potential reasoning paths and selecting the optimal
one through the methods such as consistency-based selection (Wang et al., 2023), reward-guided
choosing (Stiennon et al., 2020; Liu et al., 2020; Cobbe et al., 2021; Dong et al., 2023), reasoning tree
search (Yao et al., 2024; Zhou et al., 2023), etc. Empirical studies demonstrate that increased test-
time computation consistently improves model performance Snell et al. (2024b); Yue et al. (2024);
OpenAI (2024), suggesting the existence of inference scaling laws (Wu et al., 2024). Nevertheless,
the theoretical analysis of inference-time computing and its scaling law remains quite open.

Theory for transformer test-time computing. Inspired by the empirical success of the
inference-time computing techniques of LLMs, recently there have been a few works trying to
demystify the mechanism behind it through analysis on theoretical tasks and simple transformer
models. Both Wen et al. (2024); Kim and Suzuki (2024) consider how to train a one-layer transformer
that utilizes CoT reasoning to efficiently solve the k-parity learning task, which provably improves
over the same one without using CoT reasoning. Hu et al. (2024) studies the statistical properties
of CoT prompting and its variants including majority vote and tree-of-thought (ToT). However,
their analysis is model agnostic and does not consider concrete transformer models compared with
our work. The mostly related to our paper is the work of Huang et al. (2025) who considers a
one-layer transformer to solve in-context linear regression task with continuous coefficient. They
show that the transformer can be well trained to perform vanilla multi-step GD with CoT. However,
the fundamental difference between the study of Huang et al. (2025); Wen et al. (2024); Kim and
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Suzuki (2024) and ours is that we propose to include randomness in the inference stage of the
transformer models, which then allows us to go further and study more sophisticated test-time
computing methods that involve randomly sampling multiple reasoning or CoT paths.

Theory for in-context learning by transformers. In-context learning (ICL) (Brown et al.,
2020) is a key capability of LLMs which means that the model is able to answer a new query
provided with a few query-answer demonstrations of the similar tasks without updating the model
parameters. The empirical success of ICL methods has sparked a long line of theoretical research for
the ICL ability of transformers. Most of these theoretical research builds on the in-context learning
framework of Garg et al. (2023), where input-output pairs are formalized as {(xi, f(xi))}ni=1, and
the model (typically, transformers) is required to learn the unknown function f(·) from the context
without updating the parameters. This framework enables theoretical analysis of transformers
across multiple dimensions: expressive power (Bai et al., 2024; Guo et al., 2023), mechanistic
understanding (Giannou et al., 2024; von Oswald et al., 2023; Ahn et al., 2023a; Li et al., 2025), and
training dynamics (Zhang et al., 2023; Huang et al., 2023; Chen et al., 2024a; Wu et al., 2023; Zhang
et al., 2025). While most existing research treats transformer decoding as a deterministic process,
theoretical understanding of test-time computation for transformer ICL remains in its infancy.

2.1 Preliminaries and More Backgrounds

This section outlines the problem setups. We first detail transformers’ inference mechanism,
emphasizing sampling-based techniques for enhancing test-time computation. We then introduce
in-context linear regression, the theoretical task central to our study.

2.1.1 Transformer and Sampling-based Test-time Computing

A transformer (Vaswani, 2017) is an auto-regressive sequence-to-sequence model that predicts the
next token’s distribution, i.e., p(xt+1|xt, · · · , x1). It maps the representation of the last token xt+1

to a softmax distribution over the vocabulary space V to determine the probability of xt+1.
The above inference mechanism can be abstracted in the following way. Given the current input

sequence embedding Ht = (h1, · · · ,ht) ∈ Rde×t, one iteratively performs the following two steps:
• Compute and extract the hidden state for the last position t, i.e., h̃t = TFθ(Ht), where TFθ denotes
the stacked transformer blocks in the whole architecture.

• Sample the next token xt+1 (and thus the embedding of the next token ht+1) based on a probability
distribution returned by a sampling algorithm inputted with h̃t, i.e., ht+1 ← Sampling Alg(h̃t).
Sampling-based test-time computation. As previously introduced, the probabilistic nature

of the computation procedure can introduce randomness into the inference process, which is key
to an array of techniques for scaling up test-time computing in order to boost the performance
of large language models for various tasks, including Best-of-N sampling (BoN) (Stiennon et al.,
2020; Nakano et al., 2021; Dong et al., 2023), majority vote (Wang et al., 2022), etc. Notably,
these methods typically sample N independent reasoning trajectories through the above decoding
mechanism and choose the one with the highest value of a given reward model or the most consistent
one across all candidates.

2.1.2 Theoretical Task: In-context Linear Regression.

We explore how sampling-based test-time computing can enhance transformer performance by
focusing on in-context linear regression, a common problem setup (Akyürek et al., 2022; Von Oswald
et al., 2023; Zhang et al., 2023; Chen et al., 2024b). In-context learning (ICL Brown et al. (2020))
involves auto-regressive models inferring answers from few task demonstrations. we consider the
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following general setup: first drawing the ground truth parameter from the prior w∗ ∼ pw(·), then

(xi, yi) ∼ Dw∗ , yi = x⊤
i w

∗ + ϵi, ∀i ∈ [n], (2.1)

where pw denotes the prior distribution of the regression tasks, ϵi is the i.i.d. random noise, and
n ∈ N is the size of the in-context dataset. The goal of in-context linear regression is to use
transformers to make predictions regarding the true label x⊤

queryw
∗ associated with another covariate

xquery ∼ N (0, Id) when prompted with the in-context dataset (x1, y1, · · · ,xn, yn) concatenated
with the query xquery. Towards such a goal, this work aims to establish a theoretical framework
that allows one to principally investigate how sampling-based techniques for scaling up test-time
computing could benefit the predictions, thus boosting the performance of solving the task.

3 Scaling Test-time Computation for In-Context Regression

In this section, we introduce our theoretical framework for studying sampling-based test-time
computing of transformers (Section 2.1.1) through in-context linear regression (Section 2.1.2). We
present our framework in Section 3.1. After that, we study two instances of the in-context linear
regression task (2.1), depending on the types of the task prior pw, to design concrete sampling
algorithms for inference.

3.1 A Theoretical Framework

We begin by noticing that most of the existing prior works on in-context linear regression by
transformers are incapable for studying sampling-based test-time computing due to the lack of (i)
randomness of the output of the transformer architecture they study; (ii) chain-of-thought (CoT)
style multi-step reasoning in the outputs. To handle the challenge, we explicitly construct an
inference mechanism that involves both randomness and auto-regressive CoT reasoning to solve
in-context linear regression tasks. Specifically, motivated by the recent work of Huang et al. (2025),
we consider the specific goal of in-context coefficient prediction, where the final output of the
transformer reasoning path is a prediction ŵ of the task coefficient w∗. The transformer inference
mechanism is designed to output stochastic reasoning paths, and different sampling-based test-time
computing techniques correspond to how to aggregate different reasoning paths.

Inputs and transformer architecture. Given the in-context dataset (x1, y1, · · · ,xn, yn), the
prompt to the transformer (defined later) is the following matrix in Rde×(n+1),

H0 =


x1 · · · xn 0
y1 · · · yn 0
0 · · · 0 w0

0 · · · 0 1

 :=


X⊤ 0
y⊤ 0
0 w0

0 1

 , (3.1)

where the dimension of the embedding de = 2d+ 2. We denote X⊤ = (x1, · · · ,xn) ∈ Rd×n as the
collection of covariates, and denote y⊤ = (y1, · · · , yn) ∈ R1×n as the collection of labels. We input
an initial guess of the coefficient, denoted by w0, and we w0 = 0 without loss of generality. Note
that such a prompt embedding format which separates the space of data and the space of weight
predictions follows the convention of Bai et al. (2024); Huang et al. (2025) in order to facilitate
theoretical analysis.

The model we consider is a one-layer self-attention module equipped with residual connection
(Von Oswald et al., 2023; Zhang et al., 2023; Ahn et al., 2023b; Huang et al., 2025):

TFθ(H) := H+VH · H
⊤WH

n
: Rde×∗ 7→ Rde×∗. (3.2)

6



where θ = {V,W} denotes the parameters. Here V ∈ Rde×de represents the consolidation of
the projection and value matrices in a standard transformer block, and W ∈ Rde×de denotes the
consolidation of the key and query matrices.

Sampling-based auto-regressive inference mechanism. With the model (3.2) and the
prompt (3.1), we consider the following mechanism of inference that mimics a real LLM.

Definition 3.1 (Inference mechanism). Given a prompt embedding matrix H0, for each ℓ ∈ N, we
iteratively sample the embeddings for the next token as following:

• Compute H̃ℓ = TFθ(Hℓ) with TFθ(Hℓ) defined in (3.2);

• Extract h̃ℓ from H̃ℓ last column, i.e., h̃ℓ = (H̃ℓ):,−1;

• Sample the embedding vector for the next token via Sampling Alg, i.e., hℓ+1 ← Sampling Alg(h̃ℓ);

• Concatenate to obtain the embedding matrix for the new sequence of length ℓ+ 1, i.e., Hℓ+1 =
(Hℓ,hℓ+1).

Here Sampling Alg(·) is to be determined that assigns the distribution of the next token
(embedding) conditioning on the last token’s embedding output by the transformer. Note that
the output of the above mechanism is a joint result of the transformer model and the sampling
algorithm.

Towards the goal of in-context weight prediction for (2.1), we introduce the following proposition,
which shows that the transformer architecture together with a proper sampling algorithm can
implement variants of noisy gradient descent.

Proposition 3.2 (Definition 3.1 can implement noisy GD). There exists a transformer instance of
(3.2) denoted by TFθGD and a type of sampling algorithm Sampling Alg such that given prompt H0

defined in (3.1), the output embedding after t iterative generations Ht according to Definition 3.1
satisfies (Ht):,n+ℓ = (0⊤, 0,w⊤

ℓ , 1)
⊤ with

wℓ ∼ p
(
·
∣∣∣wℓ−1−

η

n
·X⊤(Xwℓ−1−y

))
,∀1 ≤ ℓ ≤ t,

where the conditional distribution p(·|·) is specified by the sampling algorithm Sampling Alg.

This proposition is mainly motivated by the recent work of Huang et al. (2025). Please refer
to Appendix B.1 for a detailed proof of Proposition 3.2. Proposition 3.2 shows that the above
inference mechanism is able to explicitly implement gradient-based iterative algorithms to predict
the regression coefficient w∗. We define the prediction of the regression coefficient after t reasoning
steps of one reasoning path as wt := (Ht)d+2:2d+1,n+t. One special case of Proposition 3.2 is a
transformer that explicitly performs standard multi-step GD (Huang et al., 2025), i.e., p(·|x) = δx(·).
Please see Appendix B.2 for the details.

Now to theoretically understand the effectiveness of more sophisticated sampling-based test-time
computing techniques, e.g., Best-of-N and majority vote, we go beyond (B.1) and consider sampling
algorithms that does introduce randomness into the reasoning path. We formalize these test-time
computing methods we study in this paper as following.

Definition 3.3 (Sampling-based test-time computing techniques). Given a transformer TFθ and a
sampling algorithm that jointly satisfy Proposition 3.2, together with a prompt embedding matrix
H0 in (3.1), a CoT reasoning length limit t ∈ N+, and a sampling budget N ∈ N+, we consider the
following test-time computing methods:

7



• Firstly generate N random predictions of the regression coefficient as {w(j)
t }Nj=1 (see Proposi-

tion 3.2);

• Then aggregate the N random outcomes {w(j)
t }Nj=1 by using one of the following options:

1. Ensemble: wavg := N−1 ·
∑N

j=1w
(j)
t ;

2. Best-of-N: wBoN := argmax{w(j)
t }Nj=1

R(w
(j)
t ) where R(·) : Rd 7→ R is certain reward function;

3. Majority vote: wmv := argmax{w(j)
t }Nj=1

Occur(w
(j)
t ), where Occur(·) : Rd 7→ N is a proper

function that counts the occurrence of the input.

In the following Sections 3.2 and 3.3, we instantiate the in-context linear regression task (2.1)
to more concrete task priors, and investigate the effectiveness and the scaling law of the above
test-time computing techniques. We also remark that in this paper we assume the existence of a
transformer satisfying Proposition 3.2 without explicitly training such one from scratch, which is
left as an interesting future work.

3.2 Case Study 1: In-context Linear Regression with Continuous Coefficient

The first type of tasks we consider is the standard in-context linear regression with continuous
regression coefficient sampled from a Gaussian distribution, i.e., pw = N (0, ω2 · Id). For this case,
the specific type of sampling algorithms Sampling Alg we study is concluded in Algorithm 1.

Algorithm 1 Sampling algorithm for in-context linear regression with continuous coefficient

1: Input: token embedding h̃, noise level σ ≥ 0, noise transformation function ϕ·(·) : Rd×Rd 7→ Rd.

2: Extract the coefficient w̃ from h̃, i.e., w̃ = (h̃)d+2:2d+1

3: Sample a noise vector ξ ∼ N (0, σ2 · Id)
4: Define w← w̃ + ϕξ(w̃)
5: Output: h := (0, 0,w, 1)⊤.

Under sampling method Algorithm 1, Proposition 3.2 is satisfied with x′ ∼ p(·|x) given by
x′ = x+ϕξ(x) for a Gaussian random seed ξ and some noise transformation function ϕξ. Recall that
by Proposition 3.2, w̃ output by the transformer is performing one-step gradient descent from the
last prediction. The intuition of studying Algorithm 1 is that such a noisy version of the gradient
descent could allow exploration of the loss landscape, and we aim to investigate whether the test-time
computing techniques in Definition 3.3 could properly aggregate the random gradient-based paths
to achieve a better prediction than vanilla multi-step GD (B.1) via less overfitting. In this paper,
we investigate the following two concrete and simple examples of the noise transformation function
(NFT) ϕξ. Potential future works could investigate other types of ϕξ.

Example 3.4 (Constant NFT). ϕξ(w) := ξ, independent of the input w and is homogeneous across
reasoning steps.

Example 3.5 (Linear NFT). ϕξ(w) := ξξ⊤w, linear in the input predicted weight w such that the
sampling distribution has different shape based upon the current decoding result.

We consider the following test-time computing methods.
Baseline: multi-step GD with CoT (B.1). This is a transformer implementing a vanilla

GD, without using Algorithm 1 but directly using one-step GD as the next token. It is clear that
this baseline is deterministic and does not require multiple samples.

8



Ensemble. We consider sample average of the predictions from N reasoning paths. We denote
the resulting prediction after N sampling paths of length t as wavg.

Best-of-N. We also consider BoN with the oracle reward model R⋆(w) := −∥w −w∗∥22. The
resulting prediction accuracy gives an upper bound for other test-time computing method due to the
usage of the truth. We denote the resulting prediction after N sampling paths of length t by wBoN.

3.3 Case Study 2: In-context Sparse Linear Regression in Discrete Space

Motivated by the practical setting where the candidate tokens lie in a discrete space, we also
consider another case in which the coefficient is a sparse binary vector, denoted as w∗ ∈ {0, 1}d
with ∥w∗∥0 = k < d. In this situation, we consider the following sampling algorithm Sampling Alg,
which performs sampling on a discrete space {0, 1}d based on the predicted weight w̃ in the
transformer output. In algorithm 2, the function ClipNorm(·) first clips each element in w̃ to
be non-negative and then normalizes the resulting vector such that its elements sum to 1, i.e.,
(ClipNorm(w̃))i = max{w̃i, 0}/

∑d
i′=1max{w̃i′ , 0}. This resembles the softmax operation over a

vocabulary set. Then algorithm 2 simulates LLM decoding by sampling tokens based such a
distribution. More specifically, given the distribution p, we sample the (embedded) next token w as
a k-sparse vector with non-zero coordinates sampled from p. We treat the vector sparsity k as a
fixed parameter satisfying 1 ≤ k < d, with k typically set to 1 in practice. Such a discrete nature of
these coefficients enables us to consider the method of majority vote among the sampling-based
test-time computing strategies in Definition 3.3. In this work, we compare majority vote to a
baseline inference mechanism based on greedy decoding which does not utilize sampling.

Algorithm 2 Sampling algorithm for in-context linear regression with binary coefficient

1: Input: token embedding h̃, coefficient sparsity k ∈ [d].
2: Initialize w← 0d
3: Extract the coefficient w̃ from h̃, i.e., w̃ = (h̃)d+2:2d+1

4: Compute predicted distribution p = ClipNorm(w̃)
5: Sample k different indices (e1, . . . , ek) ⊂ [d] based on p without replacement
6: Assign weℓ = 1 for each eℓ ∈ {e1, · · · , ek}
7: Output: h := (0, 0,w, 1)⊤.

Baseline: greedy decoding. In the decoding step, instead of sampling k items based on p as
depicted in Algorithm 2 (Line 5), we opt to choose k items with the highest k probabilities under p
and set the corresponding indices of w to 1. This mirrors the greedy decoding algorithm commonly
used in practice. We denote the resulting prediction after t reasoning steps as w

greedy
t .

Majority vote. Utilizing the discrete nature of the coefficients, we apply the Occur(·) function
to candidate answers, selecting the most frequent one as our majority vote (see Definition 3.3). The
prediction after sampling N reasoning paths of length t is denoted as wt,Nmv.

Here we present theoretical results for Case Study 1 and 2 in Section 4 and 5 respectively, with
numerical results in Section 6.1.

4 Analysis of In-context Linear Regression with Continuous Coef-
ficient

In this section, we establish the theoretical analysis for Section 3.2. We measure the performance
of any in-context coefficient prediction by its population risk under Dw∗ , i.e., LDw∗ (w) := (1/2) ·

9



E(x,y)∼Dw∗ [(y − x⊤w)2], which is equivalent to consider the following excess risk,

E(w) := LDw∗(w)− inf
w′∈Rd

LDw∗(w) =
1

2
·∥w −w∗∥2H,

where H := Ex∼Dw∗

[
xx⊤] denotes the population covariance matrix. We denote the collection of

label noise in the in-context data as ϵ := y−Xw∗. We also denote the eigenvalues of the population
covariance matrix H as {λi}1≤i≤d in a non-increasing order. Our analysis relies on standard
assumptions on the data distribution (Bartlett et al., 2020), which is presented in Assumption D.1
due to space limit. By the same reason, we present our results for a special case of H with
polynomially decaying eigenvalues, and refer to the readers to the expressions of general H in
Appendix C.

Baseline: multi-step GD with CoT. The following result gives the excess risk bound
for transformers implementing vanilla multi-step gradient descent (B.1). This is a corollary of
Theorem C.1 and is proved in Appendix D.2.

Proposition 4.1. Under the same assumptions and setups as in Theorem C.1, by additionally
assuming that the spectrum of H satisfies polynomially decaying, i.e., λi = i−(r+1) for some r ≥ 1,
then for any reasoning path length t ≲ η(r+1)(r+1)/2d(r+1)/2, with probability at least 1− 1/poly(n),

Eϵ,w∗ [E(wGD)] ≲ ω2 ·
(

1

tη

) r
r+1

+
σ2
ϵ

n
· (tη)

1
r+1 .

Aggregating by ensembling. In this case, the final regression coefficient reasoned by the
transformer test-time computing under the budget of CoT length t and reasoning path number N

is explicitly given by wavg := N−1 ·
∑N

j=1w
(j)
t , where each random reasoning path {w(j)

ℓ }1≤ℓ≤t is
i.i.d. generated according to Definition 3.1 via a transformer satisfying Proposition 3.2 and with
Algorithm 1. The following result gives the excess risk bound for this method with different choices
of the NFT ϕξ. The proof is in Appendix D.4.

Theorem 4.2. Under the same assumptions and setups as in Theorem C.2, additionally assuming
that the spectrum of H satisfies polynomially decaying, i.e., λi = i−(r+1) for some constant r ≥ 0,
we have the following results.

1. Constant noise transformation function (Example 3.4): taking the reasoning length t ≲ η(r +
1)(r+2)/2n(r+1)/2, with probability at least 1− 1/poly(n),

E
[
E(wavg)

]
≲ ω2 ·

(
1

tη

) r
r+1

+
σ2
ϵ

n
· (tη)

1
r+1 +

ϑn,t
N

.

2. Linear noise transformation function (Example 3.5): taking the noise variance σ2 ≍ d−1, the
reasoning length t > σ−2 · log 2, with probability at least 1− 1/poly(n),

E
[
E(wavg)

]
≲ω2 ·λ̃

r
r+1 +

σ2
ϵ

n
·
(
η(1− σ2)

σ2

) 1
r+1

+
ςn
N

,

where λ̃ := η−1(2t−1 + σ2(1 + 2t−1)/(1− σ2)).

Here the expectation is taken with respect to ϵ, w∗, and all the sampling noise ξ across different
reasoning steps and paths. The explicit formula for the functions ϑn,t and ςn are deferred to (C.2)
and (C.3), respectively.
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The above theorem reveals how the prediction accuracy evolves as the reasoning length t and
sample numbers N increase. In particular, we make the following remarks (i) In the above excess
risk, the terms ϑn,t/N and ςn/N represent the error from sampling finitely many reasoning paths
N . By taking N large enough (see (C.4) and (C.5) in Corollary C.3), the leading term of the excess
risk would be the first two terms. (ii) By the result for Example 3.4, Algorithm 1 with constant
noise does not provide benefit compared with TF implementing vanilla GD (see Proposition 4.1).
(iii) In contrast, we next show that with linear NFT Algorithm 1 can prevent overfitting to noisy
labels. Considering the following regime of the parameters,

ω, σϵ ≍ 1, n ≍ ηd, σ2 ≍ d−1, t ≍ t̃ · σ−2, (4.1)

risk bounds for the vanilla multi-step GD and the ensemble method (using linear NFT (Example 3.5))
are as following,

Eϵ,w∗ [E(wGD)] ≲ t̃
1

r+1 · (ηd)−
r

r+1 ,

Eϵ,w∗,ξ

[
E(wavg)

]
≲ (ηd)−

r
r+1 , if N ≥ η

r
r+1d

2r+1
r+1 .

Notice that by the conditions in Proposition 4.1 and Theorem 4.2, all the above conclusions hold
when t = t̃ · σ−2 is not exceeding the order of η(r + 1)(r+1)/2n(r+1)/2, which, under the parameter
regime (4.1), translates to t̃ ≲ d(r−1)/2. Thus we are able to observe that in the high-dimensional
regime, vanilla GD method has the disadvantage of harmful overfitting to the label noise when the
effective reasoning path length t̃ is increasing, while the sampling-based test-time computing does
not (see details in Remark C.4).

5 Analysis of In-context Sparse Linear Regression in Discrete
Space

In this section, we conduct a theoretical analysis for binary sparse in-context linear regression
(Section 3.3). Our strategy of studying and comparing the test-time computing methods is to analyze
the probability of perfectly recovering the true coefficient, i.e., P(wgreedy

t = w∗) and P(wmv
t,N = w∗).

We use the notation p(wt = w) := P(wt = w | w0,D) to indicate the probability of weight w after
t reasoning steps, conditioning on the initial state w0 and the in-context dataset D in a single
reasoning path. We define W = {w | w ∈ {0, 1}d, ∥w∥0 = k} and assume x ∼ N (0, Id) and label
noise ϵi ∼ N (0, σϵ2) with σϵ > 0.

Our first result shows that if in a single reasoning path the prediction wt has a probability of
recovering the truth higher than that of recovering any other coefficient, then majority vote recovers
the truth with a probability converging to 1 exponentially fast. The proof is in Appendix E.1.

Proposition 5.1 (Sample complexity for majority vote). Consider the binary sparse in-context
linear regression task (Section 3.3) and using majority vote with reasoning length T and sampling
number N . The final prediction wmv

t,N can asymptotically recover the truth w∗ with probability 1
given sufficient sample size N if for a single reasoning path

∆t := p(wt = w∗)− max
w′∈W\{w∗}

p(wt = w′) > 0. (5.1)

Under condition (5.1), it holds that

P
(
wmv
t,N = w∗ | w0,D

)
≥ 1− |W| · exp

(
−N∆2

t /2
)
.
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We remark that similar results of Proposition 5.1 have also been proposed in Wu et al. (2024).
Here, we further provide more detailed analysis for the majority vote in our binary sparse linear
regression task, show its dependence on the in-context example number n, reasoning length t,
and compare it with the greedy decoding algorithm to emphasize when it is important to use the
sample-then-select method.

Our main result to this end is the following two theorems. The first result is regarding the
regime where we have sufficiently many in-context data n, with proof in Appendix E.2.

Theorem 5.2 (Perfect recovery probability with sufficient in-context examples). Suppose that
n ≥ (6k + 3σϵ)

4, then the overall recovery probability of greedy decoding and majority vote are lower
bounded as following:

• Greedy decoding: for any reasoning length t ≥ 1, P
(
w

greedy
t = w∗) ≥ 1− δ(n)

• Majority vote: for any reasoning length t ≥ 1 and sampling number N ≥ 1, it holds that

P
(
wmv
t,N = w∗) ≥ (1− δ(n)

)
·
(
1− |W| · e−N∆2

t /2
)
.

Here δ(n) = 2d(d + 2) · exp(−c · n1/2) for some absolute constant c > 0, and for any t ≥ 1, ∆t

satisfies that

∆t ≥
ptrans

ptrans + 1− precurr

(
1−(precurr−ptrans)t−1

)
,

where the quantities ptrans, precurr ∈ (0, 1) are defined as

ptrans :=

(
1− 2k + σϵ

n1/4 − (2k + σϵ)

)
· 1
dk

, precurr :=

(
1− σϵ

n1/4 − σϵ

)
·

(
n1/4 − σϵ

n1/4 − σϵ + dσϵ

)k
.

Theorem 5.2 establishes lower bounds on the recovery probability for both greedy decoding
and majority vote. The recovery probability improves exponentially with the number of in-
context examples. For majority vote, since 0 < ∆t < 1 for all t ≥ 1, as with sufficiently many
number of sampling paths (N → ∞), we have P

(
wmv
t,∞ = w∗) ≥ 1 − δ, which matches that

of greedy decoding P(wgreedy
t = w∗), and both algorithms can achieve perfect accuracy given

sufficient in-context examples n. Moreover, we remark that precurr > ptrans since it holds that
(n1/4 − σϵ)(n

1/4 − σϵ + dσϵ)
−1 > d−1 for sufficiently many in-context examples n > (3σϵ)

4. When
σϵ = 0, we have precurr = 1 and ptrans > 1/2dk, ensuring that ∆t converges to 1 as t→∞.

The theorem for sufficient in-context data does not highlight the advantage of majority vote
in terms of recovery probability. However, real-world applications and our experiments show that
majority vote is more accurate and robust with limited in-context data. We present our second
main theorem to analyze this scenario, considering the case with only one in-context example (n = 1
and k = 1). Although simplified, this case offers valuable insights into the robustness of majority
vote.

Theorem 5.3 (Majority vote outperforms greedy decoding in the case of limited in-context
examples). Consider the case where n = k = 1, σϵ = 0, and denote the in-context example as
(x,x⊤w∗). We have the following results.
• Greedy decoding: for any reasoning length t ≥ 1,

P
(
w

greedy
t = w∗) ≤ 1

2d−1
+

2

d
.
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Figure 2: Numerical experiments on in-context linear regression with continuous coefficients (a-d)
and binary coefficients (e-h).

• Majority vote: there exists a ζ > 0 such that for reasoning steps t ≥ 2 log 2/ log(1− ζ), sampling
number N ≥ 1,

P
(
wmv
t,N = w∗) ≥ 1− 1

2d−1
.

Theorem 5.3, detailed with proof in Appendix E.3, highlights a key difference between majority
vote and greedy decoding with limited in-context examples. As shown in numerical experiments,
greedy decoding frequently gets stuck in cyclic state transitions, failing to reach the optimal state
w∗. In contrast, majority vote explores the state space more effectively, enabling a high probability
of converging to w∗ even in constrained scenarios, as shown in numerical experiments in Section 6.1.

6 Experiments

6.1 Numerical Results for In-Context Linear Regression

Here, we validate our theoretical findings through numerical experiments. For the continuous case,
we examine the effects of varying σϵ and σ. Our results demonstrate that with ensemble aggregation,
constant NFT provides no performance improvement, while linear NFT reduces test loss given
sufficient sample size, confirming Corollary 4.2. Furthermore, when decoding with a reward model,
even constant NFT yields consistent performance improvements as sample numbers increase.

For the binary sparse coefficient case, we observe from Fig 2 (e) that with sufficient examples,
both greedy decoding and majority voting achieve perfect accuracy, supporting Theorem 5.2. From
Fig 2 (f) we find that when setting n = 1 and d = 10, σϵ = 0, with sufficiently large reasoning length
T , majority voting achieves high accuracy, while greedy search maintains approximately 2/d = 0.2
accuracy, consistent with Theorem 5.3. We fit the relationship between accuracy Acc and sample
number N using Acc = αT − βT e

−νTN for given T . The results, shown in Fig 2 (g) and (h), not
only validate Theorem 5.1 but also suggest practical applications for real-world LLM inference.

6.2 Insights for LLM Inference

Our theoretical analysis reveals two critical terms O(e−∆2
TN/2) and O(e−µT ) for the overall accuracy

Acc(T,N) and probability gap ∆T . These findings can provide valuable insights into real-world
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Figure 3: Utilizing data with low computational costs to forecast results for high computational
costs, where ⋆ denotes predicted results and  denotes the data utilized.

LLM inference.
To begin, we can observe that ∆T changes with the number of reasoning steps T in O(e−µT ).

This can be described as:

∆T ≈ γ − κe−µT . (6.1)

Specifically, for sampling number of N = 1, here we assume we can directly express the overall
accuracy as :

Acc(T, 1) ≈ γ′ − κ′e−µT . (6.2)

Note that Eq (6.2) and (6.1) shares the same µ. To predict the final accuracy for a given sampling
number N , here we introduce two additional parameters (α(T,N), β(T,N)) and formulate Acc(T,N)
as:

Acc(T,N) ≈ α(T,N) − β(T,N)e
−∆2

TN/2. (6.3)

To effectively fit Eq (6.1) - (6.3), based on the results on Fig 2 (g) and (h), we further claim two
conjectures:
• When T is fixed, then Eq 6.3 can be approximated by:

Acc(T,N) ≈ αT − βT e
−∆2

TN/2.

• When N is fixed, then Eq 6.3 can be approximated by:

Acc(T,N) ≈ αN − βNe
−∆2

TN/2.

This analysis enables us to predict model’s high test-time computation performance using data
from low-computation, resulting our Low-Cost-to-High Prediction Algorithm 3, we validate our
algorithm on GSM8K (Cobbe et al., 2021) and a subset of MATH (Hendrycks et al., 2021), details
can be found in Appendix A. Fig 3 demonstrates that our algorithm successfully predicts model
performance at high computational costs using only data from settings with relatively low reasoning
tokens T or sampling numbers N .
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7 Conclusions and Limitations

This paper makes the initial step toward bridging the gap between practical language model test-
time computing techniques with sampling and theoretical transformer analysis by incorporating
randomness into the decoding process. We study the task of in-context linear regression with
continuous/binary coefficients and provide a detailed analysis of widely adopted inference techniques,
offering new insights into inference behaviors in real-world language models. Potential future works
include analyzing other types of sampling algorithms and reasoning methods. Also it remains open
to rigorously analyze the benefits of BoN method and its variants (with respect to different reward
models) that we experimentally verified to be effective.
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A Experiment Details

A.1 Experiment Settings

Details for Figure 1: We evaluate real-world LLM using the GSM8K dataset (Cobbe et al., 2021),
employing SGLang (Zheng et al., 2024) as our inference framework; and use synthetic data with our
theoretical framework to simulate practical decoding procedures. The experimental configurations
are as follows:

• LLM Performance on GSM8K with Varying Sample Number: We employ Llama3.1-
8b (Dubey et al., 2024) with an 8-shot chain-of-thought prompt following (Wei et al., 2022).
For each question, we generate 256 potential answers using decoding temperature of 1.0. We
implement an oracle reward model that perfectly validates answer correctness, and set the
temperature to 0.0 for greedy search.

• LLM Performance on GSM8K with Varying Reasoning Lengths: Using Llama3.1-
8b-instruct, we analyze performance across different reasoning lengths, defined as the token
consumption per inference call. Following (Zhang and Chen, 2024), we incorporate token
budgets into the prompts to constrain the model’s responses. For each prompt, we generate
64 potential answers and create 10 random permutations of these answers. We define the
reasoning length T as the sum of token consumption across all prompts, and for multiple
samples (N > 1), we average the token counts over N . The accuracy-tokens curves are plotted
using transparent scattered points for individual permutations and fitted with trend lines.
The prompt templates are provided in F.

• IC-Linear Regression with Continuous Coefficients: We configure the parameters as
n = 36, d = 72, η = 1× 10−3, σ2

ϵ = 1, σ2 = 4, and present results at gradient descent iterations
t = 950.

• IC-Linear Regression with Binary Coefficients: We set the parameters to n = 4, k =
1, d = 48, η = 1

4 , σ
2
ϵ = 0.25.

Details for Figure 2: we conduct numerical experiments on in-context linear regression with
continuous coefficients (above a-d) and binary coefficients (below e-h), each setting we repeat 5
times, details are as follows:

• Continuous case: we set the parameters to d = 72, n = 36, η = 10−3, and present results at
gradient descent iterations t = 950.

• Binary case: In Figure 2 (e): we set n = 40, k = 2, d = 30, η = 1
40 , σϵ = 0.1; in (f): we set

n = 1, k = 1, d = 10, η = 1, σϵ = 0; in (g): we set n = 1, k = 1, d = 2, η = 1, σϵ = 0.1; in (h):
we set n = 5, k = 1, d = 10, η = 1, σϵ = 0.1.

• Fitting accuracy with varying reasoning length T : for N = 1, we fit the curve with

Acc(T, 1) ≈ α1 − β1e
−µ1T ,

for N > 1, we first approximate ∆T ≈ Acc(T, 1) ≈ α1 − β1e
−ν1T , where (α1, β1, ν1) are

obtained in case N = 1, then fit curve with

Acc(T,N) ≈ αN − βNe
−µN∆2

T .
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Details for Figure 3: We conduct experiments using GSM8K and a curated subset of the MATH
dataset (Hendrycks et al., 2021), details are as follows:

• MATH Dataset Subset: We filter the MATH to extract problems at level 1 with integer
answers, yielding a subset of 309 problems.

• We maintain consistent experimental settings with the GSM8K reasoning length evaluation as
in Figure 1, utilizing Llama3.1-8b-instruct with a decoding temperature of 1.0. To facilitate
the fitting process in Algorithm 3, we apply a scaling factor of 1

105
to the token count, T ′ = T

105
.

A.2 Low-Cost-to-High Prediction algorithm

Algorithm 3 Low-Cost-to-High Prediction algorithm

Part 1: Obtain (γ, κ, µ) in Eq 6.1

1: Input: Data at varying cost {Acc(e)(Ti, Nj)},Ti ∈ T (e), Nj ∈ N (e);
2: (γ′, κ′, µ)← Fit Eq 6.2 with {Acc(e)(Ti, 1)}T (e)

3: (αT1 , βT1 ,∆T1)← Fit Eq 6.2 with {Acc(e)(T1, Nj)}
4: (αT2 , βT2 ,∆T2)← Fit Eq 6.2 with {Acc(e)(T2, Nj)}
5: (γ, κ)← Fit Eq 6.1 with {(∆T0 , µ), (∆T1 , µ)}
6: Return (γ, κ, µ)

Part 2: Predict accuracy with (γ, κ, µ) and low cost data

1: Input: (γ, κ, µ) in Eq 6.1,DN = {Acc(e)(T1, N), Acc(e)(T2, N)};
2: ∆Ti ← γ − κe−µTi , i = 1, 2 {//Eq 6.1}
3: (αN , βN )← Fit Eq 6.2 with two data points: {(Acc(e)(T1, N), PT1), (Acc

(e)(T2, N), PT2)}
4: Use Eq 6.1,Eq 6.2 with obtained (γ, κ, µ) and (αN , βN ) to predict data with varying T .

The core ideal of Algorithm 3 is to first determine (γ, κ, µ) in Equation 6.1. Subsequently, we can
compute ∆T and Equation 6.2 using two additional parameters αN , βN , obtainable from only two
data points. Notably, since we use Acc(e)(T0, Nj) and Acc(e)(T1, Nj) during the initial parameter
estimation (Algorithm 3 Part 1, lines 3-4), no additional data is required for subsequent predictions
in part 2.

B Proofs for Section 3

B.1 Proof of Proposition 3.2

Proof of Proposition 3.2. The proof is based on the proof of Theorem 3.2 of Huang et al. (2025).
We take the desired parameter θGD = {VGD,WGD} as following,

VGD :=


0 0 0 0
0 0 0 0

−η · Id 0 0 0
0 0 0 0

 , WGD :=


0 0 Id 0
0 0 0 −1
0 0 0 0
0 0 0 0

 ,

Then one can check that when inputting Hℓ in the form of

Hℓ =


x1 · · · xn 0 · · · 0
y1 · · · yn 0 · · · 0
0 · · · 0 w0 · · · wℓ

0 · · · 0 1 · · · 1

 ,
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the output embedding of the transformer at the last token is given by

(H̃ℓ):,−1 =


0
0
w̃ℓ

1

 , w̃ℓ = wℓ −
η

n
·X⊤(Xwℓ − y).

Thus if we take the sampling algorithm Sampling Alg(·) satisfying the form of

Sampling Alg(h) = δ0(·)⊗ δ0(·)⊗ p (·|(h)d+2:2d+1)⊗ δ1(·),

for some conditional distribution p : Rd 7→ P(Rd), then the embedding of the next token would be

hℓ+1 =


0
0
wℓ

1

 , wℓ+1 ∼ p
(
·
∣∣∣wℓ −

η

n
·X⊤(Xwℓ − y

))
,

by Definition 3.1. Iterating the above argument from ℓ = 0 to t − 1 completes the proof of
Proposition 3.2.

B.2 Special Case: Vanilla Multi-step Grandient Descent with CoT

One special case of Proposition 3.2 is a transformer that explicitly performs standard multi-step
gradient descent (GD) (Huang et al., 2025), i.e., p(·|x) = δx(·), so that the final prediction of the
regression coefficient after t reasoning steps is given by

wGD := (Ht)d+2:2d+1,n+t =

(
Id −

(
Id −

η

n
·X⊤X

)t)
X⊤(XX⊤)−1y. (B.1)

We note that Huang et al. (2025) considers transformer CoT reasoning for in-context-linear regression
with noiseless labels, but here we allow the existence of label noise.

C Theoretical Analysis in Section 4 Continued

Theorem C.1 (Excess risk of vanilla multi-step GD with CoT: general covariance matrix). Under
Assumption D.1, taking the step size η ≤ ∥H∥−1

2 and CoT length t, with probability at least
1− 1/poly(n), it holds that

Eϵ,w∗ [E(wGD)] ≲ ω2 ·

(
λ̃2

n2
·
∑

1≤i≤k∗

1

λi
+

∑
k∗<i≤d

λi

)
+ σ2

ϵ ·

(
k∗

n
+

n

λ̃2
·
∑

k∗<i≤d
λ2
i

)
,

where the quantities are as follows

k∗ := min
{
k : nλk+1 ≤

n

ηt
+
∑
k<i≤d

λi
}
, λ̃ :=

n

ηt
+

∑
k∗<i≤d

λi. (C.1)

Proof of Theorem C.1. Please refer to Appendix D.1 for a proof of Theorem C.1.

Theorem C.2 (Excess risk of noisy multi-step noisy GD with CoT and ensembling). Under
Assumption D.1, taking the step size η ≤ ∥H∥−1

2 and CoT length t, we have the following risk bounds
for wavg.
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1. Constant noise transformation function (Example 3.4): with probability at least 1− 1/poly(n),

Eϵ,w∗ [E(wGD)] ≲ ω2 ·

(
λ̃2

n2
·
∑

1≤i≤k∗

1

λi
+

∑
k∗<i≤d

λi

)
+

ϑn,t
N

,

where the quantities k∗ and λ̃ are defined as the same as (C.1), and ϑt is defined as

ϑn,t := σ2d ·

(
t ·
√

r(H) ∨ log(poly(n))

n
+

1

η

)
, (C.2)

with r(H) = Tr(H)/∥H∥2 being the effective rank of H.

2. Linear noise transformation function (Example 3.5): taking the noise variance σ2 ≍ d−1 and the
reasoning path length t > σ−2 · log 2, with probability at least 1− 1/poly(n),

Eϵ,w∗,ξ

[
E(wavg)

]
≲ ω2 ·

(
(λ̃Bias)2

n2
·
∑

1≤i≤k∗Bias

1

λi
+
∑

k∗Bias<i≤d
λi

)
+ σ2

ϵ ·

(
k∗Var
n

+
n

(λ̃Var)2
·
∑

k∗Var<i≤d
λ2
i

)
+

ςn
N

,

where the quantities λ̃Bias, λ̃Var, k∗Bias, and k∗Var are defined as following respectively,

k∗(♢) := min

{
k ∈ [d] : nλk+1 ≤ λ̃

(♢)
effect +

∑
k<i≤d

λi

}
, λ̃(♢) := λ̃

(♢)
effect +

∑
k∗<i≤d

λi, for (♢) ∈ {Bias,Var},

with λ̃Bias
effect and λ̃Var

effect defined as,

λ̃Bias
effect :=

n

η
·
(
2

t
+

σ2

1− σ2

(
1 +

2

t

))
, λ̃Var

effect :=
σ2n

(1− σ2)η
,

and the quantity ςn, is given by

ςn :=

(
ησ2

ϵd

nσ2
· Tr(H) + ω2

)
· ∥H∥2. (C.3)

Proof of Theorem C.2. Please refer to Appendix D.3 for a proof of Theorem C.2.

Corollary C.3 (Theorem 4.2 restated). Under the same assumptions and setups as in Theorem C.2,
additionally assuming that the spectrum of H satisfies polynomially decaying, i.e., λi = i−(r+1) for
some constant r ≥ 0, we have the following results.

1. Constant noise transformation function (Example 3.4): taking the reasoning path length t ≲
η(r + 1)(r+2)/2n(r+1)/2 and the sampling path number

N ≥ Nc :=

(
σ2d ·

(
t ·
√

r(H) ∨ log(poly(n))

n
+

1

η

))
·

(
ω2 ·

(
1

tη

) r
r+1

+
σ2
ϵ

n
· (tη)

1
r+1

)−1

,(C.4)

then with probability at least 1− 1/poly(n),

E
[
E(wavg)

]
≲ ω2 ·

(
1

tη

) r
r+1

+
σ2
ϵ

n
· (tη)

1
r+1 .
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2. Linear noise transformation function (Example 3.5): taking the noise variance σ2 ≍ d−1, the
reasoning path length σ−2 · log 2 < t, and the sampling path number

N ≥ Nl :=

(
ω2 +

ησ2
ϵd · Tr(H)

nσ2

)
· ∥H∥2 ·

(
ω2 ·

(
σ2

η · (1− σ2)

) r
r+1

+
σ2
ϵ

n
·
(
η · (1− σ2)

σ2

) 1
r+1

)−1

≍
(
ω2 +

σ2
ϵ

n
· ηd2

)
·

(
ω2 ·

(
1

ηd

) r
r+1

+
σ2
ϵ

n
· (ηd)

1
r+1

)−1

(C.5)

then with probability at least 1− 1/poly(n),

E
[
E(wavg)

]
≲ ω2 ·λ̃

r
r+1 +

σ2
ϵ

n
·
(
η(1− σ2)

σ2

) 1
r+1

,

where λ̃ := η−1(2t−1 + σ2(1 + 2t−1)/(1− σ2)).

Here the expectation is taken with respect to ϵ, w∗, and the sampling noise ξ across different
reasoning steps and paths.

Remark C.4. Under the parameter regime of (4.1), i.e.,

ω ≍ 1, σϵ ≍ 1, n ≍ ηd, σ2 ≍ d−1,

we can obtain further simplifications of the above result. Concretely, for the linear NFT setup, the
number of sample paths needed is given by

N ≥ Nl ≍
(
ω2 + σ2

ϵd
)
·

((
ω2 + σ2

ϵ

)
·
(

1

ηd

) r
r+1

)−1

≍ d
2r+1
r+1 ,

and the excess risk bound is explicitly calculated by

Eϵ,w∗,ξ

[
E(wavg,linear)

]
≲
(
ω2 + σ2

ϵ

)
· (ηd)−

r
r+1 ≍ d−

r
r+1 .

In contrast, we can also calculate that the risk bounds for either GD or ensemble with constant NFT
is then given by

Eϵ,w∗ [E(wGD)] ,Eϵ,w∗,ξ

[
E(wavg,const)

]
≲ t̃

1
r+1 ·

(
ω2 + σ2

ϵ

)
· (ηd)−

r
r+1 ≍ t̃

1
r+1 · d−

r
r+1 .

where t̃ = σ2 · t is the scaled reasoning length, satisfying t̃ ≲ d(r−1)/2.

D Proofs for In-context Linear Regression with Continuous Coef-
ficient (Section 4)

We denote the sample covariance matrix of the in-context data as Σ := n−1X⊤X ∈ Rd×d, and
we define the gram matrix of the in-context data as A := XX⊤ ∈ Rn×n. Our results in this
section depend on the following standard technical assumptions on the in-context data and task
distributions.

Assumption D.1 (Data distribution). We assume the following on the in-context data distribution
Dw∗:
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1. The columns of H−1/2x are independent and 1-subGaussian;

2. The labels are generated according to y = x⊤w∗ + ϵ, where the label noise ϵ is independent of x
and satisfies E[ϵ] = 0 and E[ϵ2] = σ2

ϵ for some constant σϵ > 0;

3. The true coefficient w∗ follows the Gaussian prior, i.e., w∗ ∼ N (0, ω2 · Id) for some constant
ω > 0.

D.1 Proof of Theorem C.1

Proof of Theorem C.1. This follows from the same arguments as in the proof of Theorem 4.3 in
Zou et al. (2022). We refer the readers to their proofs for seek of simplicity.

D.2 Proof of Proposition 4.1

Proof of Proposition 4.1. As a special case of Theorem C.1, we begin by figuring out the optimal
index k∗. We are going to prove that under the conditions in Proposition 4.1, the optimal index is
given by

k∗ = (ηt)
1

r+1 − 1.

Notice that here without loss of generality we assume that the above quantity is an integer since
otherwise we can twist η (which is continuous) a little bit to make it an integer. And also we notice
that the above k∗ ≤ d due to our condition on t in Proposition 4.1. To prove this, it suffices to
check that the above k∗ is the smallest one satisfying the constraint in (C.1). To show it satisfies
the constraint, consider

nλk∗+1 =
n

(k∗ + 1)r+1
=

n

ηt
≤ n

ηt
+
∑
k<i≤d

λi.

To show that it is the smallest one satisfying the constraint, let’s consider the other side of the
inequality for k∗ − 1. We have the following calculations. On the one hand, we have

nλk∗ =
n(

(ηt)
1

r+1 − 1
)r+1 =

n

ηt
· 1(

1− (ηt)−
1

r+1

)r+1 ≥
n

ηt
·

(
1 + (r + 1) ·

(
1

ηt

) 1
r+1

)
, (D.1)

where the last inequality follows using log(1 + x) ≤ x and exp(x) ≥ 1 + x to obtain the following
argument

1(
1− (ηt)−

1
r+1

)r+1 = exp
(
−(r + 1) log

(
1− (ηt)−

1
r+1

))
≥ exp

(
(r + 1)(ηt)−

1
r+1

)
≥ 1 + (r + 1)(ηt)−

1
r+1 .

On the other hand, we have that

n

ηt
+

∑
k∗−1<i≤d

λi ≤
n

ηt
+

∑
i>k∗−1

1

ir+1
≤ n

ηt
+

1(
(ηt)

1
r+1 − 1

)r ≲
n

ηt
+

(
1

ηt

) r
r+1

. (D.2)

Now to see that k∗ − 1 does not satisfies the constraint, in view of (D.1) and (D.2), it boils down to
show that

n

ηt
·

(
1 + (r + 1) ·

(
1

ηt

) 1
r+1

)
≥ n

ηt
+

(
1

ηt

) r
r+1

,
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which is equivalent to restricting the reasoning path length t satisfying t ≤ η · (r + 1)
r+1
2 · n

r+1
2 .

According to our condition on the reasoning path length t in Proposition 4.1, this requirement does

hold, and thus k∗−1 does not satisfy the constraint. Therefore we have proved that k∗ = (ηt)
1

r+1 −1.
With the k∗ in hand, we can then follow the same arguments as in the proof of Corollary 4.5 in

Zou et al. (2022) to obtain the final result. This completes the proof of Proposition 4.1.

D.3 Proof of Theorem C.2

D.3.1 Proof for Example 3.4

Proof of Theorem C.2 for Example 3.4. Under this setting, each reasoning path is generated though
the following iteration:

w
(j)
t+1 = w

(j)
t −

η

n
X⊤(Xw

(j)
t − y) + ξ

(j)
t .

Based on this, we define the expected path w
GD(η;X,y)
t and the fluctuation ∆

(j)
t iteratively as

w
GD(η;X,y)
t+1 = w

GD(η;X,y)
t − η

n
X⊤(Xw

GD(η;X,y)
t − y),

∆
(j)
t+1 = w

(j)
t −w

GD(η;X,y)
t

= (I− ηΣ)∆
(j)
t + ξ

(j)
t .

By this characterization, we see that {∆(j)
t }j≤N is a sequence of iid zero-mean random variable

for fixed t. This expectation-fluctuation decomposition allows us to recast the risk of the sample
averaged output as

E(wavg
t ) = E(wGD(η;X,y)

t ) +N−1E
[
∥∆(1)

t ∥2H
]
. (D.3)

In Theorem C.1, we have characterized the average-case risk of the gradient descent, therefore it
suffices to study the fluctuation of a single reasoning path. In the sequel, we drop the superscript j
for simplicity. Define St = E[∆t∆

⊤
t ], then we have that

St+1 = (I− ηΣ)St(I− ηΣ)⊤ + σ2I

=
t∑

j=0

σ2(I− ηΣ)2j ,

where the last identity holds because of the deterministic initialization S0 = 0. Now we have that

E[∥∆(j)
t ∥2H] = ⟨St,Σ⟩+ |⟨St,H−Σ⟩|

≤ Tr
( t−1∑
j=0

σ2(I− ηΣ)2jΣ
)
+Tr(St) · ∥H−Σ∥2. (D.4)

For the first term above, we have that
∑t

j=0(1− ηλ)2jλ ≤ 1/η for λ ∈ [0, 1/η]. For the second term
, we have by Koltchinskii and Lounici (2017, Theorem 9) that there exists an event with probability
1− δ over the randomness of X, on which it holds that

∥H−Σ∥2 ≲
√

r(H) ∨ log(1/δ)

n
,
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where r(H) = Tr(H)/∥H∥2 is the effective rank of H. And we have the trivial upper bound that
Tr(St) ≤ σ2d · t. Plugging them into (D.3) and (D.4), we get that

E(wavg
t ) ≤ E(wGD(η;X,y)

t ) +N−1⟨St,H⟩

≤ E(wGD(η;X,y)
t ) +

σ2d

N

(
t ·
√

r(H) ∨ log(1/δ)

n
+

1

η

)
.

This concludes the proof of the theorem.

D.3.2 Proof for Example 3.5

Now we give the proof of Theorem C.2 for Example 3.5. The proof relies on the following key
lemmas.

Lemma D.2 (Error decomposition). The difference between wavg and the true coefficient w∗ can
be decomposed as following,∥∥wavg −w∗∥∥2

H
≤ Bias + Variance + Fluctuation,

where each of the three terms are defined as following,

Bias :=
∥∥∥(X⊤G−1X− Id

)
w∗
∥∥∥2
H
, Variance =

∥∥∥X⊤G−1ϵ
∥∥∥2
H
, Fluctuation =

∥∥∥∥∥∥ 1

N

N∑
j=1

∆(j)

∥∥∥∥∥∥
2

H

,(D.5)

with the matrix G ∈ Rn×n and the vectors {∆(j)}Nj=1 defined as following,

G :=

(
σ2n

(1− σ2)η
· In +A

)(
In −

(
1− σ2

)t · (In − η

n
·A
)t)−1

, (D.6)

∆(j) :=

t−1∑
k=0

(
k−1∏
ℓ=0

(
Id − ξ

(j)
t−ℓ(ξ

(j)
t−ℓ)

⊤)(Id − ηΣ
)) (

Id − ξ
(j)
t−k(ξ

(j)
t−k)

⊤) · η
n
·X⊤y

−
t−1∑
k=0

(
1− σ2

)k+1(
Id − ηΣ

)k · η
n
·X⊤y.

Proof of Lemma D.2. By definition, the output wavg is defined as

wavg :=
1

N

N∑
j=1

w
(j)
t , (D.7)

where for each j ∈ [N ], the coefficient w
(j)
t is given by

w
(j)
t =

t−1∑
k=0

(
k−1∏
ℓ=0

(
Id − ξ

(j)
t−ℓ(ξ

(j)
t−ℓ)

⊤)(Id − ηΣ
)) (

Id − ξ
(j)
t−k(ξ

(j)
t−k)

⊤) · η
n
·X⊤y

= ∆(j) +
t−1∑
k=0

(
1− σ2

)k+1(
Id − ηΣ

)k · η
n
·X⊤y︸ ︷︷ ︸

:=wt

.
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Now we decompose the difference between wavg in (D.7) and the truth w∗ as following, considering

wavg −w∗ =
1

N

N∑
j=1

w
(j)
t −w∗ = wt −w∗ +

1

N

N∑
j=1

∆(j), (D.8)

where the difference wt −w∗ can be further explicitly expanded as

wt −w∗ =
t−1∑
k=0

(
1− σ2

)k+1(
Id − ηΣ

)k · η
n
·X⊤y −w∗

=

t−1∑
k=0

(
1− σ2

)k+1(
Id − ηΣ

)k · η
n
·X⊤(Ww∗ + ϵ

)
−w∗

=
(
1− σ2

)
·
(
Id −

(
1− σ2

)t(
Id − ηΣ

)t)(
σ2Id +

(
1− σ2

)
ηΣ
)−1
· η
n
·X⊤Xw∗ −w∗

+
(
1− σ2

)
·
(
Id −

(
1− σ2

)t(
Id − ηΣ

)t)(
σ2Id +

(
1− σ2

)
ηΣ
)−1
· η
n
·X⊤Xϵ

=
(
X⊤G−1X− Id

)
w∗ +X⊤G−1ϵ, (D.9)

where the last equality uses the definition of the matrix G in (D.6) and the fact that(
Id −

(
1− σ2

)t(
Id − ηΣ

)t)(
σ2Id +

(
1− σ2

)
ηΣ
)−1

X⊤

= X⊤
(
In −

(
1− σ2

)t (
Id −

η

n
A
)t)(

σ2In +
(
1− σ2

)
ηA
)−1

.

Finally, by combining (D.8) and (D.9), we can arrive at

∥∥wavg −w∗∥∥2
H

=

∥∥∥∥∥∥
(
X⊤G−1X− Id

)
w∗ +X⊤G−1ϵ+

1

N

N∑
j=1

∆(j)

∥∥∥∥∥∥
2

H

≤ Bias + Variance + Fluctuation.

This completes the proof of Lemma D.2.

Lemma D.3. The matrix G satisfies the that for any CoT length t ≥ σ−2 · log 2, it holds that

σ2n

(1− σ2)η
· In +A ⪯ G ⪯ n

η
·
(
2

t
+

σ2

1− σ2

(
1 +

2

t

))
· In +A.

Proof of Lemma D.3. It is direct from the definition of G in (D.6) to see the left side of the inequality.
To prove the right side of the inequality, consider that by (D.6), we have the following,

G−
(

σ2n

(1− σ2)η
· In +A

)
(D.10)

=
(
1− σ2

)t · ( σ2n

(1− σ2)η
· In +A

)(
In −

η

n
·A
)t(

In −
(
1− σ2

)t · (In − η

n
·A
)t)−1

.

To proceed, it suffices to consider the real-valued single-variable function f defined as

f(x) =

(
η−1
(
1− σ2

)−1
nσ2 + x

)
·
(
1− n−1ηx

)t
1−

(
1− σ2

)t · (1− n−1ηx
)t .
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On the one hand, for t ≥ σ−2 · log 2, we have t > − log 2/ log(1− σ2)(1− n−1ηx), and thus

1−
(
1− σ2

)t · (1− n−1ηx
)t ≥ 1

2
. (D.11)

On the other hand, by direct calculations we can see that the numerator is upper bounded by(
σ2n

(1− σ2)η
+ x

)
·
(
1− n−1ηx

)t ≤ 1

t
· n
η
·
(

σ2

1− σ2
+ 1

)
. (D.12)

Consequently, by combining (D.11) and (D.12), we can see that for t ≥ σ−2 · log 2,

f(x) ≤ 2

t
· n
η
·
(

σ2

1− σ2
+ 1

)
,

which, combined with (D.10), further indicates that

G−
(

σ2n

(1− σ2)η
· In +A

)
⪯ 2

t
· n
η
·
(

σ2

1− σ2
+ 1

)
·A.

This completes the proof of the right side inequality of Lemma D.3 and finishes the proof.

Lemma D.4 (Bias error). Under Assumption D.1, taking the step size η ≲ Tr(H)−1 and for any
k ∈ [d], with probability at least 1− 1/poly(n), it holds that

Ew∗ [Bias] ≲ ω2 ·

 1

n2
·

n

η
·
(
2

t
+

σ2

1− σ2
·
(
1 +

2

t

))
+
∑
k<i≤d

λi

2

·
∑

1≤i≤k

1

λi
+
∑
k<i≤d

λi

 .

Proof of Lemma D.4. According to the definition of Bias in (D.5), using that w∗ ∼ N (0, ω2 · Id) we
have

Ew∗ [Bias] = Ew∗∼N (0,ω2·Id)

[∥∥∥H 1
2
(
Id −X⊤G−1X

)
w∗
∥∥∥2
2

]
= ω2 · Tr

(
H
(
Id −X⊤G−1X

)2)
≤ ω2 · Tr

H

(
Id −X⊤

(
n

η
·
(
2

t
+

σ2

1− σ2

(
1 +

2

t

))
· In +A

)−1

X

)2
 ,

where the last inequality follows from Lemma D.3. Notice that the quantity of trace on the right
hand side actually corresponds to the bias error of the standard ridge regression with regularization
coefficient λ̃effect of

λ̃Bias
effect :=

n

η
·
(
2

t
+

σ2

1− σ2

(
1 +

2

t

))
.

Thus by invoking Theorem 1 of Tsigler and Bartlett (2023), we can then obtain the result in
Lemma D.4.

Lemma D.5 (Variance error). Under Assumption D.1, taking the step size η ≲ Tr(H)−1 and for
any k ∈ [d], with probability at least 1− 1/poly(n), it holds that

Eϵ [Variance] ≲ σ2
ϵ ·

k

n
+ n ·

 σ2n

(1− σ2)η
+
∑
k<i≤d

λi

−2

·
∑
k<i≤d

λ2
i

 .
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Proof of Lemma D.5. According to the definition of Bias in (D.5), using that ϵi ∼ N (0, σ2
ϵ ) we have

Eϵ [Variance] = Eϵ∼N (0,σ2
ϵ ·Id)

[∥∥∥H 1
2X⊤G−1ϵ

∥∥∥2
2

]
= σ2

ϵ · Tr
(
XHX⊤G−2

)
≤ σ2

ϵ · Tr

(
XHX⊤

(
σ2n

(1− σ2)η
· In +A

)−2
)

Similar to the proof of Lemma D.4, the above quantity on the right hand side actually corresponds
to the variance error of standard ridge regression with regularization coefficient λ̃effect of

λ̃Var
effect :=

σ2n

(1− σ2)η
.

Consequently, by Theorem 1 of Tsigler and Bartlett (2023), we can obtain the result in Lemma D.5.

Lemma D.6 (Fluctuation error). Suppose that we choose σ2 < 1/(d + 1) and the step size
η ≲ Tr(H)−1. Then there exists an event with probability 1− 1/poly(n) over the randomness of X
on which it holds that

Ew∗,ξ,ϵ[Fluctuation] ≲
(ησ−2σ2

ϵd · Tr(H)/n+ ω2) · ∥H∥2
N

Proof of Lemma D.6. In the proof, we replace the notation ∆(j) with ∆j
t to emphasize the depen-

dence on the reasoning step. From the characterization in Lemma D.2, we have for each path and
its expectation over ξ, it holds that

w
(j)
t+1 = (I− ξ

(j)
t+1ξ

(j)
t+1

⊤
)(I− ηΣ)

(
w

(j)
t + ηX⊤y/n

)
= (1− σ2) · (I− ηΣ)(w

(j)
t + ηX⊤y/n) + σ2 ·

(
I− σ−2ξ

(j)
t+1ξ

(j)
t+1

⊤)
(w

(j)
t + ηX⊤y/n)

wt+1 = (1− σ2)(I− ηΣ)(wt + ηX⊤y/n). (D.13)

Since there exists an event with probability 1− 1/poly(n) on which Tr(Σ) ≳ Tr(H), we have that
η < 1/Tr(Σ) with high probability. In order to control the fluctuation error, we begin with deriving
a deterministic upper bound on wt.

Bounding the expected path. By (D.13), the quantity gt = wt + ηX⊤y can be iteratively
characterized as follows:

gt+1 = (1− σ2)(I− ηΣ)gt + ηX⊤y/n

=

t∑
k=0

(1− σ2)k
(
I− ηΣ

)k
ηX⊤y/n

=
t∑

k=0

(
I− σ2I− ηΣ+ ησ2Σ)kηΣw∗

+
t∑

k=0

(
I− σ2I− ηΣ+ ησ2Σ)kηX⊤ϵ/n,
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To this end, we define p(z) =
∑t

k=0(1− σ2 − z + σ2z)k. We can bound the scalar polynomials p(z),
p(z) · z and p2(z) · z on [0, 1) as

p(z) ≤ 1

σ2 + (1− σ2)z
;

p(z) · z ≤ z

σ2 + (1− σ2)z
≲ (σ−2z) ∧ 1; (D.14)

p2(z) · z ≤ z(
σ2 + (1− σ2)z

)2 ≲ (σ−4z) ∧ z−1. (D.15)

We begin with the first term. It follows from (D.14) that

∥p(ηΣ) · ηΣ∥2 ≲ (σ−2 · η∥Σ∥2) ∧ 1.

Therefore the first term can be upper bounded by
(
(σ−2η∥Σ∥2) ∧ 1

)
· ∥w∗∥2. For the second term,

we have that

Eϵ

[∥∥∥ t∑
k=0

(
I− σ2I− ηΣ+ ησ2Σ)kηX⊤ϵ/n

∥∥∥2
2

]
=

ησ2
ϵ

n
· Tr

(
p(ηΣ) · ηΣ · p(ηΣ)

)
,

And therefore we have by (D.15) that

Eϵ,w∗ [sup
t≥0
∥gt∥22] ≲

ησ2
ϵ

n
· σ−4Tr(Σ) +

(
1 ∧ σ−2η∥Σ∥2

)
∥w∗∥22

≲
ησ2

ϵ

n
σ−4Tr(Σ) + ∥w⋆∥22.

Bounding the fluctuation. In the following, we use Λ
(j)
t = (I− σ−2ξ

(j)
t+1ξ

(j)
t+1

⊤
) for abbreviation.

The fluctuation term ∆
(j)
t follows that

∆
(j)
t+1 = w

(j)
t+1 −wt+1

= (1− σ2) · (I− ηΣ) ·∆(j)
t + σ2 ·Λ(j)

t · (w
(j)
t + ηX⊤y). (D.16)

For each t, we have that Λ
(j)
t is independent with w

(j)
t and is of zero mean. Consequently we have

that E[∆(j)
t ] = 0 for any t ≥ 0. Besides, it can be easily verified by induction that ∆

(j)
t , j ≤ N are

independent and identically distributed. Thanks to this, we have that

E
[∥∥∥N−1

∑
j≤N

∆
(j)
t

∥∥∥2
H

]
= E

[
N−2

∑
j≤N

∆
(j)
t

⊤
H∆

(j)
t +N−2

∑
j<k

∆
(j)
t

⊤
H∆

(k)
t

]
= N−1⟨H,E[∆(j)

t

⊤
∆

(j)
t ]⟩. (D.17)

Therefore, it suffices to upper bound the second moment of the fluctuation along a single reasoning
path. For simplicity, let us drop the superscript (j) in the subsequent analysis. We study the
iteration of the second moment St = E[∆t∆

⊤
t ]. Rewriting (D.16), we get that

∆t+1 = (1− σ2) · (I− ηΣ)∆t + σ2Λt∆t

+ σ2Λt · (wt + ηX⊤y).
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Note that Λt and ∆t are zero mean and independent, we have that

St+1 = (1− σ2)2 · (I− ηΣ)St(I− ηΣ)

+ σ4 · E[Λt∆t∆
⊤
t Λ

⊤
t ] + σ4η2 · E[Λtwtw

⊤
t Λ

⊤
t ]

= (1− σ2)2 · (I− ηΣ)St(I− ηΣ)

+ σ4
(
Tr(St)I+ diag(St)

)
+ σ4 ·

(
Tr(gtg

⊤
t )I+ diag(gtg

⊤
t )
)
.

Here the second identity follows from Lemma D.7 and gt = wt + ηX⊤y. The structure of this
iteration has two folds. The first part is that the gradient step, together with the average effect of
the noise term, help to decay the second moment of the fluctuation. The second part is that the
noise term re-allocate the fluctuation in the last step to the current step in an isotropic manner.
Since Tr(A) prevails over diag(A), we can continue as

Tr(St+1) ≤ (1− σ2)2 · ∥I− ηΣ∥22Tr(St) + σ4(d+ 1) ·
(
Tr(St) + Tr(gtg

⊤
t )
)

≤
(
(1− σ2)2 · ∥I− ηΣ∥22 + σ4(d+ 1)

)
· Tr(St) + σ4(d+ 1)max

t≥0
∥gt∥22. (D.18)

Based on our assumption that σ2 < (d+ 1)−1, it holds by the convexity of the quadratic function
that

(1− σ2)2 · ∥I− ηΣ∥22 + σ4(d+ 1) ≤ (1− σ2)2 + σ4(d+ 1)

≤ 1− dσ2

d+ 1
.

Plugging this back to (D.18), we have that

Tr(St+1) ≤
σ4 · (d+ 1) ·maxt≥0 ∥gt∥22

1− (1− σ2)2 · ∥I− ηΣ∥22 − σ4(d+ 1)

≤ (d+ 1)2σ2

d
·max
t≥0
∥gt∥22.

Now we can leverage (D.17) and get that

Eϵ,w⋆,ξ

[∥∥∥ 1

N

N∑
j=1

∆(j)
∥∥∥2
H

]
≤ Eϵ,w⋆

[
N−1Tr(St) · ∥H∥2

]
≲

(d+ 1)2σ2

Nd
·
(ησ2

ϵ

n
· σ−4Tr(Σ) + Ew∗ [∥w∗∥22]

)
· ∥H∥2

≲
(ησ−2σ2

ϵd · Tr(H)/n+ ω2) · ∥H∥2
N

.

The last inequality use that Tr(Σ) ≲ Tr(H) with high probability. This concludes the proof for the
fluctuation error.

Now with the above lemmas, we are ready to conclude and prove Theorem C.2 for Example 3.5.

Proof of Theorem C.2 for Example 3.5. Combining Lemma D.2, Lemma D.4, Lemma D.5, and
Lemma D.6 gives the desired result.
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D.4 Proof of Theorem 4.2

D.4.1 Proof for Example 3.4

Proof of Theorem 4.2 for Example 3.4. This follows directly from Theorem C.2 for Example 3.4
and the proof of Proposition 4.1.

D.4.2 Proof for Example 3.5

Proof of Theorem 4.2 for Example 3.5. This follows from Theorem C.2 for Example 3.5, and re-
peating the proof of Proposition 4.2 for k∗Bias and k∗Var in Theorem C.2.

D.5 Technical Results

Lemma D.7. For any deterministic matrix A ∈ Rd×d and ξ ∼ N (0d, Id), it holds that

E[(I− ξξ⊤)A(I− ξξ⊤)] = Tr(A)Id + diag(A),

where (diag(A))ij = δij ·Aij and δij is the Kronecker delta.

Proof of Lemma D.7. Note that the (i, j)-entry of I− ξξ⊤ is δij − ξiξj . First of all, it is clear that
whenever |{i, j} \ {k, l}| ≥ 1 or |{k, l} \ {i, j}| ≤ 1, we have that E[(δij − ξiξj) · (δkl − ξkξl)] = 0. So
the only non-trivial cases are that: (i) i = j = k = l; (ii) {i, j} = {k, l} and i ̸= j. For the first
case, we have that E[(δij − ξiξj) · (δkl − ξkξl)] = E[(ξiξj)2] = 1. For the second case, we have that
E[(1− ξ2i )

2] = E[ξ4i ]− E[ξ2i ]2 = 2.
Given this we have for i ̸= j that

E[ΛAΛ]i,j = E[
d∑

k,l=1

ΛikAklΛlj ] = 0,

because each summand is zero since i ̸= j. For the diagonal terms, we have that

E[ΛAΛ]i,i = E[
d∑

k,l=1

ΛikAklΛli]

= E[
d∑

k=1

ΛikAkkΛki]

= E[
∑
k ̸=i

ΛikAkkΛki] + E[ΛiiAiiΛii]

= Tr(A) +Aii.

Thus the desired result follows.

E Proofs for Section 5

Notation We let [n] denote the set of indices from 1 to n. Boldface uppercase letters such as
X represent matrices, while boldface lowercase letters such as x denote vectors. Specifically, x[i]
denotes the i-th element of x.
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E.1 Proof of Theorem 5.1

Proof of Proposition 5.1. Considering that we sample N different wt from the distribution {p(wt =

w)}w∈W to obtain W = {w(1)
t , . . . ,w

(N)
t }. Let Count(w) represent the frequency of occurrence of

w in W. For each w′ ∈ W \ {w∗}, we upper bound the probability of Count(w′) > Count(w∗).

To this end, we define N random variables a1, · · · , aN such that ai = 1 if w
(i)
t = w∗, ai = −1 if

w
(i)
t = w′, and ai = 0 otherwise. This leads to the following bound,

P(Count(w′) > Count(w∗) | w0,D) ≤ P

(
N∑
i=1

ai ≤ 0 | w0,D

)
≤ exp

(
−
(
p(wt = w∗)− p(wt = w′)

)2 · N
2

)
,

where the last inequality is due to Hoeffding’s inequality. Then∑
w′∈W\{w∗}

P(wmv
t,N = w′ | w0,D) ≤

∑
w′∈W\{w∗}

P(Count(w′) > Count(w∗) | w0,D)

≤
∑

w′∈W\{w∗}

exp

(
−N

2
·
(
p(w∗)− p(w′)

)2)

≤ |W \ {w∗}| · exp
(
−N

2
·∆2

t

)
,

where the final inequality is based on the definition of ∆t = p(w∗)− max
w′∈W\{w∗}

p(w′). Consequently,

P(wmv
t,N = w∗ | w0,D) ≥ 1−

∑
w′∈W\{w∗}

P(wmv
t,N = w′ | w0,D) ≥ 1− |W| · exp

(
−N

2
·∆2

t

)
.

This completes the proof of Proposition 5.1.

E.2 Proof of Theorem 5.2

Here, we first establish bounds for each element in w̃t in Theorem E.1. Next, in Theorem E.2, we
prove wT will converge to w∗ for both greedy decoding and majority vote algorithm. Lastly, in
Theorem E.3, we demonstrate the convergence rate for greedy decoding as shown in Theorem 5.2.

Lemma E.1. Given w̃t = wt−1 − 1
n

(
XX⊤wt−1 −XY⊤), where Y = w∗X+ ϵ, We define E1 as

follows:

E1 :=


w∗[i] +

2k + σϵ

n1/4
≥ w̃t[i] ≥ w∗[i]− 2k + σϵ

n1/4
,

specifically when wt−1 = w∗,w∗[i] +
σϵ

n1/4
≥ w̃t[i] ≥ w∗[i]− σϵ

n1/4

 ,

then E1 holds with probability at least 1− δ, where δ = 2
(
d2 + 2d

)
e−cn

1/2
.

Proof.

w̃t[i] = wt−1[i]−
1

n

∑
j∈[n],l∈[d]

(xjixjlwt−1[l]− xjixjlw
∗[l]) +

1

n

∑
j∈[n]

xjiϵi

= wt−1[i]−
1

n
(wt−1[i]−w∗[i])

∑
j∈[n]

x2ji︸ ︷︷ ︸
Ai

− 1

n

∑
l∈[d],l ̸=i

(wt−1[l]−w∗[l])
∑
j∈[n]

(xjixjl)︸ ︷︷ ︸
Bil

+
1

n

∑
j∈[n]

xjiϵi

= wt−1[i]−
1

n
(wt−1[i]−w∗[i])Ai −

1

n

∑
l∈[d],l ̸=i

(wt−1[l]−w∗[l])Bil +
1

n

∑
j∈[n]

xjiϵi.
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Since xij ∼ N (0, 1) for any i, j, by Lemma 2.7.7 and Bernstein’s inequality in Vershynin (2018),
there exists an absolute constant c1 such that

P{|
∑
i

xjixjl| ≤ t} ≤ 2 exp

(
−c1min

(
t2∑

j ||xjixjl||2ψi

,
t

maxj ||xjixjl||ψi

))
,

where ||.||ψ1 denotes to the sub-exponential norm. Besides, ||xjixjl||ψi
≤ ||xji||ψ2 · ||xjk||ψ2 ≤ C2

1 ,
with the last inequality derived from the properties of the Gaussian distribution, where C1 is a
constant. Furthermore, we have:

P{|Bil| ≤ t1} ≤ 2 exp

(
−c1min

(
t21

nC4
1

,
t1
C2
1

.

))
Similarly we have

P{|
∑
j∈[n]

xjiϵi| ≤ t2} ≤ 2 exp

(
−c2min

(
t22

nC4
1σ

2
ϵ

,
t2

C2
1σϵ

.

))
For Ai =

∑
j∈[n] x

2
ji, since x2ji − 1 are sub-exponential and mean zero random variables, we can

directly apply Bernstein’s inequality to obtain:

P{|Ai − n| ≤ t3} ≤ 2 exp

(
−c3min

(
t23

nC4
3

,
t3
C2
3

))
By setting t1 = t3 = n3/4, t2 = σϵn

3/4, c = min(c1,c2,c3)

max(C4
1 ,C

4
2 ,C

4
3 ,C

2
1 ,C

2
2 ,C

2
3)
, and applying the derived

Theorem E.2, Theorem E.2, Theorem E.2 for all i, l ∈ [d], we establish that

|Bil| ≤ n3/4 ∀i, l ∈ [d];

|
∑
j∈[n]

xjiϵi| ≤ σϵn
3/4 ∀i ∈ [d];

|Ai − n| ≤ n3/4 ∀i ∈ [d],

holds with a probability of at least 1− 2
(
d2 + 2d

)
e−cn

1/2
. Hereafter, we condition on Theorem E.2.

By combining Theorem E.2 with Theorem E.2, the following equation is obtained:

w̃t[i] = wt−1[i]−
1

n
(wt−1[i]−w∗[i])Ai −

1

n

∑
l∈[d],l ̸=i

(wt−1[l]−w∗[l])Bil +
1

n

∑
j∈[n]

xjiϵi

≤ w∗[i] +
1

n1/4

∑
l∈[d]

|wt−1[l]−w∗[l]|+ σϵ

n1/4

≤ w∗[i] +
2k + σϵ

n1/4
,

the final inequality is by ||wt||0 = k (t ≥ 1) and ||w0||0 = 0. Similarly we have.

w̃t[i] ≥ w∗[i]− 1

n1/4

∑
l∈[d]

|wt−1[l]−w∗[l]| − σϵ

n1/4

≥ w∗[i]− 2k + σϵ

n1/4

Specifically, when wt−1 = w∗,

w∗[i] +
σϵ

n1/4
≥ w̃t[i] ≥ w∗[i]− σϵ

n1/4
.
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Without loss of generality, in the following we assume the first k elements of w∗ are 1, and
others are 0. We define C(m) as the set of all possible permutations for [m].

Lemma E.2 (Perfect Accuracy for Both Greedy Decoding and Majority Vote). Given w̃t =
wt−1 − 1

n

(
XX⊤wt−1 −XY⊤), where Y = w∗X + ϵ, suppose E1 holds, 2k+σϵ

n1/4 < 1
3 and sampling

number N is sufficient large, then for all t ≥ 1, we have

w
maj·N
t = w

greedy
t = w∗.

Proof. Given that E1 holds, for t ≥ 1:{
w̃t[i] ≥ 1− 2k+σϵ

n1/4 > 1/2 i ≤ k

w̃t[i] ≤ 2k+σϵ
n1/4 < 1/2 k < i ≤ d

.

In this case we observe that w̃t[i] > w̃t[j] for all i ≤ k and k < i ≤ d. Without loss of generality,
we further assume

w̃t[1] ≥ w̃t[2] ≥ · · · ≥ w̃t[k] > w̃t[k + 1] ≥ w̃t[k + 2] ≥ · · · ≥ w̃t[d].

For pw̃t [i] =
max(0,w̃t)∑d
j=1 max(0,w̃t)

, we also have

pw̃t [1] ≥ pw̃t [2] ≥ · · · ≥ pw̃t [k] > pw̃t [k + 1] ≥ pw̃t [k + 2] ≥ · · · ≥ pw̃t [d].

Then for w′ ∈ W/w∗ where the index of nonzero elements are e1, e2, . . . , ek (in increasing order),
we have

P (wt = w∗|wt−1)− P
(
w1 = w′|wt−1

)
=

∑
(i1,...,ik)∈C(k)

(
pw̃t [i1] ·

pw̃t [i2]

1− pw̃t [i1]
· · · pw̃t [ik]

1−
∑

j<k pw̃t [ij ]
− pw̃t [ei1 ] ·

pw̃t [ei2 ]

1− pw̃t [ei1 ]
· · · pw̃t [eik ]

1−
∑

j<k pw̃t [eij ]

)
> 0,

the last inequality holds because pw̃t [i] ≥ pw̃t [ei] for all i < k and pw̃t [k] > pw̃t [ek], thus for t ≥ 1:

P (wt = w∗|wt−1) > P
(
wt = w′|wt−1

)
∀w′ ∈ W/w∗ ,wt−1 ∈ W,

Since greedy decoding selects the w with highest probability, w
greedy
t = w∗ for all t ≥ 1. Additionally,

P (wt = w∗|w0) =
∑
w∈W

P (wt = w∗|wt−1 = w)P (wt−1 = w|w0)

>
∑
w∈W

P
(
wt = w′|wt−1 = w

)
P (wt−1 = w|w0)

= P
(
wt = w′|w0

)
.

This implies P (wt = w∗|w0) > P (wt = w′|w0) for all w ∈ W/w∗ , and according to Theorem 5.1,
majority vote will choose wmv

t,N = w∗ with sufficient large sampling number N .

Lemma E.3 (Convergence Rate for Majority Vote ). Given w̃t = wt−1 − 1
n

(
XX⊤wt−1 −XY⊤),

where Y = w∗X+ ϵ, suppose E1 holds and 2k+σϵ
n1/4 < 1

3 , then

P (wt = w∗|w0)− max
w′∈W/w∗

P
(
wt = w′|w0

)
≥ ptrans

ptrans + 1− precurr

(
1− (precurr − ptrans)

t−1
)
.
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Where

ptrans =

(
1− 2k + σϵ

n1/4 − (2k + σϵ)

)
1

dk
,

precurr =

(
1− σϵ

n1/4 − σϵ

)(
n1/4 − σϵ

n1/4 − σϵ + dσϵ

)k
.

Proof. First, when wt−1 = w∗, we have{
w̃t[i] ≥ 1− σϵ

n1/4 i ≤ k

w̃t[i] ≤ σϵ
n1/4 k < i ≤ d

Let τ = σϵ
n1/4 . For pw̃t [i] =

max(0,w̃t)∑d
j=1 max(0,w̃t)

and i ≤ k:

pw̃t [i] ≥
1− τ

k (1− τ) + dτ
=

1

k

k (1− τ)

k (1− τ) + dτ

Hence,

P (wt = w∗|wt−1 = w∗) =
∑

(i1,...,ik)∈C(k)

(
pw̃t [i1] ·

pw̃t [i2]

1− pw̃t [i1]
· · · pw̃t [ik]

1−
∑

j<k pw̃t [ij ]

)

≥

(
1
k −

dτ
(k(1−τ)+dτ)k

)k
k!∏k−1

m=1

(
1−m

(
1
k −

dτ
(k(1−τ)+dτ)k

))
≥
(

1− τ

1 + (d− 1) τ

)k
the last inequality is by let v = k(1−τ)

k(1−τ)+dτ(
v
k

)k
k!∏k−1

m=1

(
1−m v

k

) ≥ vk
(
1
k

)k
k!∏k−1

m=1

(
(k − (k − 1) v)

(
1−m 1

k

))
=

vk

(k − (k − 1) v)k−1

(
1
k

)k
k!∏k−1

m=1

(
1−m 1

k

)
≥
(

v

k − (k − 1) v

)k
=

(
1− τ

1− τ + dτ

)k
Next, for w′ ∈ W/w∗ where the index of nonzero elements are e1, e2, . . . , ek (increasing order),

we have:

P (wt = w∗|wt−1)− P
(
w1 = w′|wt−1

)
=

∑
(i1,...,ik)∈C(k)

(
pw̃t [i1] ·

pw̃t [i2]

1− pw̃t [i1]
· · · pw̃t [ik]

1−
∑

j<k pw̃t [ij ]
− pw̃t [ei1 ] ·

pw̃t [ei2 ]

1− pw̃t [ei1 ]
· · · pw̃t [eik ]

1−
∑

j<k pw̃t [eij ]

)

>

(
k∏
i=1

pw̃t [i]−
k∏
i=1

pw̃t [ei]

) ∑
(i1,...,ik)∈C(k)

(
1

1− pw̃t [i1]
· · · 1

1−
∑

j<k pw̃t [ij ]

)

>

(
1− pw̃t [ei]

pw̃t [i]

) k∏
i=1

pw̃t [i]
∑

(i1,...,ik)∈C(k)

(
1

1− pw̃t [i1]
· · · 1

1−
∑

j<k pw̃t [ij ]

)

=

(
1− pw̃t [ei]

pw̃t [i]

)
P (wt = w∗|wt−1)
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Given that P (wt = w∗|wt−1) > P (wt = w′|wt−1) for w′ ∈ W/w∗ , we have P (wt = w∗|wt−1) >
1

|W| ≥
1
dk
, when E1 holds:

P (wt = w∗|wt−1)− P
(
w1 = w′|wt−1

)
>

(
1−

2k+σϵ
n1/4

1− 2k+σϵ
n1/4

)
1

dk

Specifically,

P (wt = w∗|w∗)− P
(
w1 = w′|w∗) > (1− σϵ

n1/4

1− σϵ
n1/4

)
P (wt = w∗|w∗)

Therefore,

P (wt = w∗|w0)− P
(
wt = w′|w0

)
=
∑
w∈W

(
P (wt = w∗|wt−1 = w)− P

(
wt = w′|wt−1 = w

))
P (wt−1 = w|w0)

>
∑

w∈W/w∗

(
1− 2k + σϵ

n1/4 − (2k + σϵ)

)
P (wt = w∗|wt−1 = w)P (wt−1 = w|w0)

+

(
1− σϵ

n1/4 − σϵ

)
P (wt = w∗|w∗)P (wt−1 = w∗|w0)

>

(
1− 2k + σϵ

n1/4 − (2k + σϵ)

)
1

dk

∑
w∈W/w∗

P (wt−1 = w|w0) +

(
1− σϵ

n1/4 − σϵ

)(
1− τ

1− τ + dτ

)k
P (wt−1 = w∗|w0)

=

(
1− 2k + σϵ

n1/4 − (2k + σϵ)

)
1

dk︸ ︷︷ ︸
ptrans

(1− P (wt−1 = w∗|w0)) +

(
1− σϵ

n1/4 − σϵ

)(
n1/4 − σϵ

n1/4 − σϵ + dσϵ

)k
︸ ︷︷ ︸

precurr

P (wt−1 = w∗|w0)

> (precurr − ptrans)
t−1

(
P (w1 = w∗|w0)−

ptrans
ptrans + 1− precurr

)
+

ptrans
ptrans + 1− precurr

>
ptrans

ptrans + 1− precurr

(
1− (precurr − ptrans)

t−1
)

E.3 Proof of Theorem 5.3

To prove Theorem 5.3, we first demonstrate that the majority vote algorithm can achieve perfect
accuracy with a high probability given a sufficient large sampling number N (by combining
Theorem E.4 and Theorem E.5). Subsequently, for the greedy decoding algorithm, we prove that
with high probability, w

greedy
t will transition between states w′ and w′′, where w′,w′′ ̸= w∗.

In the following, as we consider the case where k = 1, we define 1i = [0, . . . , 1
↓

i-th

, 0, . . . ] be a

vector with a value of 1 at the i-th element and 0 elsewhere. Without loss of generality, we assume
w∗ = 11.

Lemma E.4. Consider the case where n = k = 1, σϵ = 0, and denote the in-context example as(
x,w⊤x

)
. Then:

P (wt+2 = w∗|wt = w) > 0

Holds for all w ∈ W with probability at least 1− 1
2d−1 .
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Proof.

P (wt+2 = w∗|wt = w) =
∑

w′∈W
P
(
wt+2 = w∗|wt−1 = w′)P (wt+1 = w′|wt = w

)
It suffices to demonstrate the existence of aw′ ∈ W , such that P (wt+2 = w∗|wt−1 = w′)P (wt+1 = w′|wt = w) >

0.
Without losing generality, we let x1 > 0, wt = 1l and for x = [x1, x2, . . . , xd] we let x1 > 0,

x2 ≥ x3 · · · ≥ xd. We have:

w̃t+1[i] = wt[i]−
∑
j∈[d]

(xixj (wt−1[j]−w∗[j]))

{
w̃t+1[i] = xi (x1 − xl) if i ̸= l

w̃t+1[i] = 1 + xl (x1 − xl) if i = l
.

If x1 − xl > 0, then w̃t+1[1] > 0, implying the existence of w′ = w∗, such that:

P
(
wt+2 = w∗|wt−1 = w′)P (wt+1 = w′|wt = w

)
=P (wt+2 = w∗|wt−1 = w∗)P (wt+1 = w ∗ |wt = w)

=
x1 (x1 − xl)∑

i∈[d]max (0, w̃t+1[i])
> 0

If x1−xl < 0, we consider the case where xd < 0, which occurs with a probability of at least 1− 1
2d−1 .

In this case, we ensure xd < 0 to satisfy xd (x1 − xl) > 0. Subsequently, leveraging the condition
x1 − xd > 0, we can choose w′ = 1d such that:

P
(
wt+2 = w∗|wt−1 = w′)P (wt+1 = w′|wt = w

)
≥ xd (x1 − xl)∑

i∈[d]max (0, w̃t+1[i])
· x1 (x1 − xd)∑

i∈[d]max (0, w̃t+2[i])
> 0

Lemma E.5. Consider the case where n = k = 1, σϵ = 0, and denote the in-context example as(
x,w⊤x

)
.There exists a ζ > 0 such that for reasoning steps T > 2 ln 1/2

ln 1−ζ and sufficient large sampling
number N , it holds that

wmv
T,N = w∗,

with probability at least 1− 1
2d−1 .

Proof. Referring to Theorem E.4, with probability at least 1 − 1
2d−1 , P (wt+2 = w∗|wt = w) > 0

holds for all w ∈ W, define

ζ = min
w∈W

P (wt+2 = w∗|wt = w) .

Assume t = 2q + 1 (if not, since P (wt = w∗|w0) ≥ P (wt−1 = w∗|w0), we can set t− 1 = 2q + 1)

P (w2q+1 = w∗|w0)

=
∑
w∈W

P (w2q+1 = w∗|w2q−1 = w)P (w2q−1 = w|w0)

=
∑

w∈W/w∗

P (w2q+1 = w∗|w2q−1 = w)P (w2q−1 = w|w0) + P (w2q+1 = w∗|w2q−1 = w∗)P (w2q−1 = w∗|w0)

≥ζ (1− P (w2q−1 = w∗|w0)) + P (w2q−1 = w∗|w0)

≥ (1− ζ)k (P (w1 = w∗|w0)− 1) + 1 ≥ 1− (1− ζ)k
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If k > ln 1/2
ln(1−ζ) , then P (w2q+1 = w∗|w0) > 1/2, and therefore:

P (wt = w∗|w0) >
1

2
> 1− P (wt = w∗|w0) > P

(
wt = w′|w0

)
∀w′ ∈ W/w∗

In this case, by Theorem 5.1, with sufficient large sample number N , wmv
T,N = w∗.

Lemma E.6. Consider the case where n = k = 1, σϵ = 0, and denote the in-context example as(
x,w⊤x

)
. Then

w
greedy
t ̸= w∗

holds with probability at least 1− 2
d −

1
2d−1 .

Proof. Here, we directly construct a case where, with a high probability, the greedy decoding will
become stuck between two stages and fail to reach the state w∗.

Without loss of generality, we assume x1 > 0, and we select x2 and x3 such that x2 = maxi>1 xi

and x3 = maxi>1 (−xi). With a probability of 1−
∑d−1

r=1
1
r+1

(d−1
r )

2d−1 − 1
2d−1 > 1− 2

d −
1

2d−1 , it holds
that x2 > x1 > 0 and x3 < 0.

In this case,
w̃1[2] = x1x2 > x1xj = w̃1[j],

holds for all j ∈ [d], j ̸= 2. Then w
greedy
1 = w′ ̸= w∗ where w′ = 12. Similarly,{

w̃2[i] = xi (x1 − x2) if i ̸= 2

w̃2[i] = 1 + xi (x1 − x2) if i = 2

If argmaxi∈[d] w̃2[i] = 2, then w
greedy
2 = w′, thus for w

greedy
t = w′ ̸= w∗ holds when t ≥ 1. . If

argmaxi∈[d] w̃2[i] ̸= 2, as x1 − x2 < 0,

w̃2[3] = x3 (x1 − x2) > xi (x1 − x2) = w̃2[j],

holds for all j ∈ [d], j ̸= 3. In this case, we have w2 = w′′ ̸= w∗ where w′′ = 13 and for w̃3:{
w̃3[i] = xi (x1 − x3) if i ̸= 3

w̃3[i] = 1 + xi (x1 − x3) if i = 3

Similarly, if argmaxi∈[d] w̃3[i] = 3, then w
greedy
3 = w′′, thus for w

greedy
t = w′′ ̸= w∗ holds when

t ≥ 2.
If argmaxi∈[d] w̃2[i] ̸= 2, as (x1 − x3) > 0, we know that w

greedy
3 = w′, then w

greedy
4 = w′′,

w
greedy
5 = w′...
In conclusion, w

greedy
t will be either w′ or w′′ for t > 0, thus w

greedy
t ̸= w∗ for t > 0.
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F Prompt Examples

Prompt For GSM8K with Assigned Token Budget

You are a math problem solver. I will give you a problem from the Grade School Math 8K
dataset (GSM8K). At the end, provide the final answer as a single integer.
Example: Problem: There are 15 trees in the grove. Grove workers will plant trees in the
grove today. After they are done, there will be 21 trees. How many trees did the grove workers
plant today? Answer (You should choose different reasoning method based on different tokens
limit):
Case 1 (low token budgets, for example 20): We have token limits 20. The answer is ##6##.
[END]
Case 2 (medium token budgets, for example 100): We have token limits 100. 21 - 15 = 6.
The answer is ##6##. [END]
Case 3 (high token budgets, for example 200): We have token limits 200. There are 15 trees
originally. Then there were 21 trees after some more were planted. So there must have been
21 - 15 = 6. The answer is ##6##. [END]
Case 4 (sufficient token budgets, for example 500): We have token limits 500. There are 15
trees originally. Then there were 21 trees after some more were planted. So there must have
been 21 - 15 = 6. [...(more thoughts such as check answer to satisfy tokens limit)] The answer
is ##6##. [END]
Important: You should try your best to use around {token limit} tokens in your reasoning
steps.
If you feel like you are finished early, spend the extra tokens trying to double check your work
until you are absolutely sure that you have the correct answer.
Here’s the problem:
{problem}
Solve this problem, use around {token limit} tokens in your reasoning, provide the final
answer as a single integer, and put your final answer in this format: “The answer is ##your
answer##.”, and end this chat with ‘[END]’

For the MATH dataset, we simply replaced the “Grade School Math 8K dataset (GSM8K)”
(first line in above prompt) with “MATH.”
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