

Can Neural Networks Achieve Optimal Computational-Statistical Trade-off?

An Analysis on Single-index Model

Siyu Chen (Yale) Beining Wu (UChicago) Miao Lu (Stanford) Zhuoran Yang (Yale) Tianhao Wang (TTIC)

NeurIPS 2024 Workshop on Mathematics of Modern Machine Learning

Introduction: Learning Single-Index Models

Gaussian single-index model \mathbb{P}_{θ^*} : $y \sim p(\cdot | \langle \theta^*, z \rangle), \quad z \sim \mathcal{N}(0, I_d)$

Goal: learning the unknown signal $\theta^{\star} \in \mathbb{R}^d$, not knowing $p(\cdot \mid \cdot)$

Assume: $p(\cdot | \cdot)$ has generative exponent $s^{\star} \in \mathbb{N}$ (Damian et al, 24) $\frac{\mathbb{P}_{\theta^{\star}}(y, z)}{\mathbb{P}_{z} \leftarrow \mathbb{Q}(y, z)} \stackrel{L^{2}(\mathbb{Q})}{=} 1 + \sum_{s \geq s^{\star}}^{\infty} \zeta_{s}(y) \cdot \operatorname{He}_{s}(\langle \theta^{\star}, z \rangle)$ $\underset{s \geq s^{\star}}{\longrightarrow} \text{Generative Exponent}$

Information Theoretic Limit

Theorem (Bach 17, ...)

Information theoretically, $n = \Omega(d)$ is necessary and sufficient to recover the true signal $\theta^* \in \mathbb{R}^d$.

- Generally, this requires exponential computing to recover the signal.
- What's the statistical complexity of gradient-based NN learner?

Baseline: Learning with Information Exponent k^{\star}

$$p(x) = \sum_{i=0}^{\infty} \alpha_i \cdot \operatorname{He}_i(x), \quad k^* = \min\{k \in \mathbb{N}_+ : \alpha_i \neq 0\}.$$

Theorem For polynomial link function with information exponent $k^* \in \mathbb{N}$

- (Arous et al. 21) two-layer NN trained by (variants) of GD can learn θ^{\star} using $n = \Omega(d^{\Theta(k^{\star})})$ number of samples.
- (Damian et al. 23) two-layer NN trained by GD with landscape smoothing can learn with $n=\Omega(d^{k^\star/2})$
 - Computational-statistical gap exists for $k^* > 2$.
- Inevitable under Correlational Statistical Query (CSQ) framework.
- Does CSQ framework characterize the fundamental stat limit of all gradient-based algorithms ?

CSQ vs SQ Framework

CSQ learner: algorithm accesses noisy queries of $y \cdot \phi(z)$: $\left| \widetilde{q} - \mathbb{E}_{y,z}[y \cdot \phi(z)] \right| \le \tau$ correlational

Does CSQ framework characterize the fundamental stat limit of all gradient-based algorithms ?

SQ learner: algorithm accesses noisy queries of $\phi(y, z)$: $\left| \widetilde{q} - \mathbb{E}_{y,z}[\phi(y, z)] \right| \le \tau$

Leverage higher order information in gradient !

- **Example:** batch-reusing for polynomial link function, n = O(d) (Dandi et al. 24, Damian et al. 24).
- No computational-statistical gap (up to log) for polynomial link.

SQ Lower Bound and Prior Arts

SQ learner: algorithm accesses noisy queries of $\phi(y, z)$: $\left| \widetilde{q} - \mathbb{E}_{y,z}[\phi(y, z)] \right| \le \tau$

Theorem (SQ lower bound; Damian et al. 24)

Under SQ, for link function with generative exponent s^* , to learn θ^* using polynomial compute, it requires $n = \Omega(d^{s^*/2})$ samples.

- Prior arts: polynomial link function ($s^{\star} \leq 2$).
- This work: can we achieve SQ lower bound by gradient-based algorithms for general link function with arbitrary s^{*}?

Failure of Vanilla SGD under Square Loss

Illustration: the rescaled gradient (single data, single neuron):

$$g = (2a)^{-1} \cdot \nabla_{\boldsymbol{\theta}} (f(z; \boldsymbol{\theta}, a) - y)^2 \approx y \cdot \sigma'(\langle z, \boldsymbol{\theta} \rangle) \cdot z$$

Moment calculation of the gradient:

SNR - Squared alignment of the normalized gradient:

$$\langle \mathbb{E}_{\mathbb{P}_{\theta^{\star}}}[g], \theta^{\star} \rangle^2 / \mathbb{E}_{\mathbb{P}_{\theta^{\star}}}[\|g]\|_2^2] \simeq d^{-s^{\star}}$$

Non-trivial alignment requires:

Challenge 2: Low SNR

$$n \cdot \text{SNR}_{1-\text{sample}} \gg d^{-1} \Leftrightarrow n = \Omega(d^{s^{\star}-1})$$

Algorithm Overview

Questions: Can we devise proper algorithm that tackles these issues?

Architecture: 2-layer neural network

 $f(z; \theta, a) = \sum_{m=1}^{M} a_m \cdot \sigma(\langle \theta_m, z \rangle)$ fixed and small

Algorithm: online batched SGD with

$$\widetilde{\boldsymbol{\theta}}_{m}^{(t+1)} = \boldsymbol{\theta}_{m}^{(t)} + \eta \overline{g}_{m}^{(t)}, \quad \boldsymbol{\theta}_{m}^{(t+1)} = \widetilde{\boldsymbol{\theta}}_{m}^{(t+1)} / \| \widetilde{\boldsymbol{\theta}}_{m}^{(t+1)} \|_{2}$$

$$\downarrow$$
Gradient direction $\overline{g}_{m}^{(t)}$ computed using:

 General gradient oracle to perform label transformation (challenge 1)

 Weight perturbation to explore loss landscape (challenge 2&3)

$$p(x) = x^2 \cdot \exp(-x^2), \quad s^* = 4$$

$$\tilde{g}(w; y, z) = \psi(y, \langle w, z \rangle) \cdot z$$

$$\psi_{m,l}^{(t)} = \frac{\gamma \theta_m^{(t)} + \xi_{m,l}^{(t)}}{\|\gamma \theta_m^{(t)} + \xi_{m,l}^{(t)}\|_2}, \quad \xi_{m,l}^{(t)} \text{ i.i.d. Unif}(\mathbb{S}^{d-1})$$

$$\bar{g}_m^{(t)} = \frac{1}{nL} \sum_{i=1}^n \sum_{l=1}^L \tilde{g}(w_{m,l}^{(t)}, y_i^{(t)}, z_i^{(t)}) + \text{debias}$$

Statistical Complexity: Matching SQ Lower Bound

Assumption 1 (Gradient Oracle)

Grad oracle has polynomial-like tails

Grad oracle is high-pass: (i) $\widehat{\psi}_s(y) = 0$ for $s \le s^* - 2$; (ii) it holds that $|\mathbb{E}_{\mathbb{P}}[\zeta_{s^*}(y)\widehat{\psi}_{s^*-1}(y)]| \ge C$

Theorem (Chen et al. 24) With Assumption 1, let mini-batch size $n = \Theta(d^{s^*/2})$, perturbation $\gamma = d^{-1/4}$, and neuron replica number $L = \Theta(d^{(s^*+1)/2})$, running online batched SGD with LR $\eta \ge 2$ for $T = \Theta(\log d)$ steps, we have at least $\Omega(M)$ neurons satisfy $|\langle \theta_m^{(T)}, \theta^* \rangle| \ge 1 - O(d^{-\epsilon})$

Instances:

- batch-reusing: $\psi(y, x) = y\sigma'(x) + y\sigma'(x + y\sigma'(x));$
- modified loss: $\psi(y, x) = \partial_f \ell(y, 0) \cdot \sigma'(x)$.

Sparse Prior: New SQ Lower Bound and Matching Upper Bound

Sparse signal prior:

 ϕ^{\star} is a uniformly sampled random k-subset of [d];

 $\theta^* \mid \phi^* \sim \text{Uniform}(\mathbb{S}^{k-1}(\phi^*)).$

Theorem (Sparse, Chen et al. 24) Suppose that $k = o(\sqrt{d})$. Let $n = \widetilde{\Theta}(k^{s^*})$, $\gamma = k^{-1/2}$ and $L = \widetilde{\Theta}(k^{(s^*+3)/2})$. Running online batched SGD with projection onto the top-k support and learning rate $\eta > 2$ for constant steps, we have $\Omega(M)$ neurons with $|\langle \theta_m^{(T)}, \theta^* \rangle| \ge 1 - O(d^{-\epsilon})$

Theorem (SQ Lower bound, Chen et al. 24) Any SQ type algorithm requires sample size $n = \Omega(k^{s^*})$ to obtain nontrivial alignment.

Thanks for Attending!