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Introduction: Learning Single-Index Models

Gaussian single-index model ℙθ⋆ : y ∼ p( ⋅ |⟨θ⋆, z⟩), z ∼ 𝒩(0, Id)

Goal: learning the unknown signal  , not knowing 


Assume:  has generative exponent  (Damian et al, 24)

θ⋆ ∈ ℝd p( ⋅ | ⋅ )
p( ⋅ | ⋅ ) s⋆ ∈ ℕ



ℙθ⋆(y, z)
ℚ(y, z)

L2(ℚ)= 1 +
∞

∑
s≥s⋆

ζs(y) ⋅ Hes(⟨θ⋆, z⟩)
Generative Exponent

Theorem (Bach 17, … )

Information theoretically,  is necessary and sufficient to 

recover the true signal              .

n = Ω(d)
θ⋆ ∈ ℝd

Generally, this requires exponential computing to recover the signal.


What’s the statistical complexity of gradient-based NN learner? 

Information Theoretic Limit

ℙy ⊗ ℙz



Baseline: Learning with Information Exponent k⋆

Theorem For polynomial link function with information exponent 

- (Arous et al. 21) two-layer NN trained by (variants) of GD can learn  
using  number of samples.

- (Damian et al. 23) two-layer NN trained by GD with landscape smoothing 
can learn with 


k⋆ ∈ ℕ
θ⋆

n = Ω(dΘ(k⋆))

n = Ω(dk⋆/2)

p(x) =
∞

∑
i=0

αi ⋅ Hei(x), k⋆ = min{k ∈ ℕ+ : αi ≠ 0} .

Computational-statistical gap exists for .

Inevitable under Correlational Statistical Query (CSQ) framework. 

k⋆ > 2

Does CSQ framework characterize the fundamental stat limit of 
all gradient-based algorithms ?



CSQ learner: algorithm accesses noisy queries of :
y ⋅ ϕ(z)
q̃ − 𝔼y,z[y ⋅ ϕ(z)] ≤ τ correlational

SQ learner: algorithm accesses noisy queries of :
ϕ(y, z)
q̃ − 𝔼y,z[ϕ(y, z)] ≤ τ

Leverage higher order information in gradient !

Does CSQ framework characterize the fundamental stat limit of 
all gradient-based algorithms ?

Example: batch-reusing for polynomial link function,  
(Dandi et al. 24, Damian et al. 24).

No computational-statistical gap (up to log) for polynomial link.

n = Õ (d)

CSQ vs SQ Framework



SQ learner: algorithm accesses noisy queries of :
ϕ(y, z)
q̃ − 𝔼y,z[ϕ(y, z)] ≤ τ

SQ Lower Bound and Prior Arts

Theorem (SQ lower bound; Damian et al. 24) 
Under SQ, for link function with generative exponent , to learn 

 using polynomial compute, it requires  samples.

s⋆

θ⋆ n = Ω(ds⋆/2)

Prior arts: polynomial link function ( ).


This work: can we achieve SQ lower bound by gradient-based 
algorithms for general link function with arbitrary  ?

s⋆ ≤ 2

s⋆



Failure of Vanilla SGD under Square Loss

Illustration: the rescaled gradient (single data, single neuron):

g = (2a)−1 ⋅ ∇θ(f(z; θ, a) − y)2 ≈ y ⋅ σ′￼(⟨z, θ⟩) ⋅ z

f(z; θ, a) = a ⋅ σ(⟨θ, z⟩)

Moment calculation of the gradient:


𝔼ℙθ⋆[g] ≈ 𝔼ℚ [y] ⋅ 𝔼ℚ [σ′￼(⟨z, θ⟩) ⋅ z]
direct bias

+ ∑
s≥s⋆

𝔼ℚ [y ⋅ ζs(y)] ⋅ 𝔼ℚ [Hes(⟨θ⋆, z⟩) ⋅ σ′￼(⟨z, θ⟩) ⋅ z]
informative queries

SNR - Squared alignment of the normalized gradient:





Non-trivial alignment requires:


 

⟨𝔼ℙθ⋆[g], θ⋆⟩2/𝔼ℙθ⋆[∥g]∥2
2] ≃ d−s⋆

n ⋅ 𝖲𝖭𝖱1−sample ≫ d−1 ⇔ n = Ω(ds⋆−1)

Challenge 1: Zero correlation 
𝔼ℚ[y ⋅ ζs⋆(y)] = 0

Challenge 2: Low SNR

Challenge 3: Non-
polynomial



Algorithm Overview

Questions: Can we devise proper algorithm that tackles these issues?

Algorithm: online batched SGD with

Architecture: 2-layer neural network

f(z; θ, a) = ∑M
m=1 am ⋅ σ(⟨θm, z⟩)

fixed and small

high-pass activation

General gradient oracle to perform 
label transformation (challenge 1)


Weight perturbation to explore loss 
landscape (challenge 2&3)

θ̃(t+1)
m = θ(t)

m + ηḡ(t)
m , θ(t+1)

m = θ̃(t+1)
m /∥θ̃(t+1)

m ∥2

Gradient direction  computed using:ḡ(t)
m

p(x) = x2 ⋅ exp(−x2), s⋆ = 4

g̃(w; y, z) = ψ(y, ⟨w, z⟩) ⋅ z

w(t)
m,l =

γθ(t)
m + ξ(t)

m,l

∥γθ(t)
m + ξ(t)

m,l∥2
, ξ(t)

m,l
i.i.d.∼ Unif(𝕊d−1)

ḡ(t)
m =

1
nL

n

∑
i=1

L

∑
l=1

g̃(w(t)
m,l, y(t)

i , z(t)
i ) + debias



Statistical Complexity: Matching SQ Lower Bound

Theorem (Chen et al. 24) 
With Assumption 1, let mini-batch size , perturbation 

, and neuron replica number , running 
online batched SGD with LR  for  steps, we 
have at least  neurons satisfy 


n = Θ̃ (ds⋆/2)
γ = d−1/4 L = Θ̃ (d(s⋆+1)/2)

η ≥ 2 T = Θ(log d)
Ω(M) |⟨θ(T)

m , θ⋆⟩ | ≥ 1 − O(d−ϵ)

Assumption 1 (Gradient Oracle) 
Grad oracle has polynomial-like tails

Grad oracle is high-pass: (i)  for ; (ii) it 
holds that 


̂ψ s(y) = 0 s ≤ s⋆ − 2
|𝔼ℙ[ζs⋆(y) ̂ψ s⋆−1(y)] | ≥ C

Instances:


batch-reusing: ;


modified loss: .

ψ(y, x) = yσ′￼(x) + yσ′￼(x + yσ′￼(x))
ψ(y, x) = ∂fℓ(y,0) ⋅ σ′￼(x)



Sparse Prior: New SQ Lower Bound and Matching Upper Bound

Sparse signal prior:

  is a uniformly sampled random -subset of ;


 .

ϕ⋆ k [d]
θ⋆ | ϕ⋆ ∼ Uniform(𝕊k−1(ϕ⋆))

Theorem (Sparse, Chen et al. 24) 
Suppose that . Let ,  and 

. Running online batched SGD with projection 
onto the top-k support and learning rate  for constant steps, 
we have  neurons with

k = o( d) n = Θ̃ (ks⋆) γ = k−1/2

L = Θ̃ (k(s⋆+3)/2)
η > 2

Ω(M) |⟨θ(T)
m , θ⋆⟩ | ≥ 1 − O(d−ϵ)

Theorem (SQ Lower bound, Chen et al. 24) Any SQ type 
algorithm requires sample size  to obtain nontrivial 
alignment. 

n = Ω(ks⋆)
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