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Introduction: Learning Single-Index Models

Gaussian single-index model Pg.: y~p(-|(0%,2)), z~ #(0,1)

Goal: learning the unknown signal 0* € R , not knowing p( - | - )
Assume: p( - | - ) has generative exponent s* € N (Damian et al, 24)
Po(y,2) 2@ =
= 14+ ) () -He (6%, 2)
Q(y, Z) S; \) S( )

Information Theoretic Limit

Theorem (Bach 17, ...)
Information theoretically, n = €2(d) is necessary and sufficient to
recover the true signal 8* € R¢.

Generally, this requires exponential computing to recover the signal.

What’s the statistical complexity of gradient-based NN learner?



Baseline: Learning with Information Exponent k*

p(x)= ) a;-He(x), k*=min{k €N, :q#0}.
i=0

Theorem For polynomial link function with information exponent k* € N
- (Arous et al. 21) two-layer NN trained by (variants) of GD can learn *

- _ O(k*)
using n = Q(d ) number of samples.

- (Damian et al. 23) two-layer NN trained by GD with landscape smoothing
*
can learn with n = Q(d*"’?)

Computational-statistical gap exists for k* > 2.

Inevitable under framework.

Does CSQ framework characterize the fundamental stat limit of
all gradient-based algorithms ?




CSQ vs SQ Framework

learner: algorithm accesses noisy queries of y - ¢(2):
q—E, [y-¢@]| <7

Does CSQ framework characterize the fundamental stat limit of
all gradient-based algorithms ?

learner: algorithm accesses noisy queries of ¢(y, z):
q—E, [, 2)] ‘ <7

Example: batch-reusing for polynomial link function, n = a(d)
(Dandi et al. 24, Damian et al. 24).

No computational-statistical gap (up to log) for polynomial link.



SQ Lower Bound and Prior Arts

learner: algorithm accesses noisy queries of ¢(V, 2):
q—E, [6(,2)] ‘ <7

Theorem (SQ lower bound; Damian et al. 24)

Under , for link function with generative exponent s*, to learn
0* using polynomial compute, it requires samples.

Prior arts: polynomial link function (s* < 2).

This work: can we achieve SQ lower bound by gradient-based
algorithms for general link function with arbitrary s* ?



Failure of Vanilla SGD under Square Loss

f(z;0,a) = a - 6({0,z))
lllustration: the rescaled gradient (single data, single neuron):

g= Qa7 Vy(fz;0,a) —y)* = y-6'(z,0)) -
Moment calculation of the gradient:

Challenge 1: Zero correlation

_@[y - Cx(¥)] =0

Ep,.[8] ~ Eq V] - Eg [0/(2.0)) - ]

direct bias /
+ Y Eq [y 60)] - Eq [He,((0%.2)) - 6'(2.0)) - 2]

— S8

Challenge 3: Non-
polynomial

7

informative queries

SNR - Squared alignment of the normalized gradient:

(Ep,[8],0%)*/Ep |llg]ll3] ~d™*
Non-trivial alignment requires: Challenge 2: Low SNR

n - SNRl_Samp|e > d_l <> NN = Q(dS*—l)




Algorithm Overview

Questions: Can we devise proper algorithm that tackles these issues?

Architecture: 2-layer neural network
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Algorithm: online batched SGD with
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Gradient direction '(t) computed using:
§wiy,2) = yw(y, (w,2)) - 2
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Statistical Complexity: Matching SQ Lower Bound

Assumption 1 (Gradient Oracle)
Grad oracle has polynomial-like tails

Grad oracle is high-pass: (i) ¥ (y) = 0 for s < s* — 2; (i) it
holds that | Ep[ () W oo (DI > C

Theorem (Chen et al. 24)

With , let mini-batch size , perturbation
v = d~*, and neuron replica number L = @(d(s*“)/z), running
online batched SGD with LR # > 2 for steps, we

have at least Q(M) neurons satisfy | (H,EQT),O*) | > 1—-0(d™°)

Instances:
batch-reusing: w(y, x) = yo'(x) + yo'(x + yo'(x));
modified loss: y(y, x) = 6ff (v,0) - 6'(x).



Sparse Prior: New SQ Lower Bound and Matching Upper Bound

Sparse signal prior:
¢ is a uniformly sampled random k-subset of [d];

0* | p* ~ Uniform(S*=1(¢™)).

Theorem (Sparse, Chen et al. 24)
Suppose that k = 0(\/6_1’). Let v =k~ and
L=0 (k(s*+3)/2). Running online batched SGD with

and learning rate n > 2 for constant steps,
we have Q(M) neurons with | (81, 0*)| > 1 — O(d™°)

Theorem (SQ Lower bound, Chen et al. 24) Any SQ type

algorithm requires sample size n = Q(ks*) to obtain nontrivial
alignment.
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