Distributionally Robust RL with Interactive Data Collection

Fundamental Hardness and Near-Optimal Algorithm

Miao Lu

Stanford University

INFORMS 2024

Joint work with

Han Zhong **PKII**

Jose Blanchet Stanford

Tong Zhang UIUC

Lu, M., Zhong, H., Zhang, T., & Blanchet, J. (2024). Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm. Preliminary version at 37th Conference on Neural Information Processing Systems (NeurIPS), 2024

Work supported by grants NSF 2118199, 2229012, 2312204 and FA9550-20-1-0397.

Outline

[Background and Problem Setup](#page-2-0)

[Hardness Result under Interactive Data Collection](#page-14-0)

[Vanishing Minimal Value Assumption and Algorithm Design](#page-17-0)

[Future Works](#page-26-0)

RL and Sim-to-Real Gaps

- ▶ RL achieves tremenduous success in:
	- Robotics
	- Healthcare
	- Recommendation systems
	- Autonomous driving
	- Training large language models
- ▶ Challenge: sim-to-real gap
	- $-$ Training env. \neq Testing env.
	- Cause degeneration of performance

U. Train Environment

JL Test Environment

Basics of RL

- \blacktriangleright MDP: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, H, \{P_h\}_{h=1}^H, \{R_h\}_{h=1}^H)$.
- \triangleright S: state space, A: action space.
- ▶ $R : S \times A \mapsto [0, 1]$: reward function
- \blacktriangleright H: Horizon length.
- \blacktriangleright P_h^* : transition distribution of training Env.
- \blacktriangleright P'_h : transition distribution of testing Env.

RL and Sim-to-Real Gaps

- ▶ RL achieves tremenduous success in:
	- Robotics
	- Healthcare
	- Recommendation systems
	- Autonomous driving
	- Training large language models
- ▶ Challenge: sim-to-real gap
	- $-$ Training env. \neq Testing env.
	- Cause degeneration of performance

U. Train Environment

J.L. Test Environment

Basics of RL

- \blacktriangleright MDP: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, H, \{P_h\}_{h=1}^H, \{R_h\}_{h=1}^H)$.
- \triangleright S: state space, A: action space.
- ▶ $R : S \times A \mapsto [0, 1]$: reward function
- \blacktriangleright H: Horizon length.
- ▶ P_h^* : transition distribution of training Env.
- ▶ P'_h : transition distribution of testing Env.

Robust Markov Decision Processes

▶ Goal: using data collected from training Env. $P^* = \{P_h^*\}_{h=1}^H$, find a policy π^* that

$$
\pi^{\star} := \argsup_{\pi \in \Pi} V_{1, P^{\star}, \Phi}^{\pi}(s) := \argsup_{\pi \in \Pi} \inf_{\substack{P_h \in \Phi(P_h^{\star}) \\ 1 \le h \le H}} \mathbb{E}^{\pi}_P \left[\sum_{h=1}^H R_h(s_h, a_h) \middle| s_1 = s \right].
$$

▶ Robust set Φ: set of testing environment distributions

– This work: we focus on Total Variation (TV) distance robust set:

$$
\Phi(P) = \bigotimes_{(s,a)\in S\times\mathcal{A}} \mathcal{P}_{\rho}(s,a;P),
$$

$$
\mathcal{P}_{\rho}(s,a;P) := \left\{ \widetilde{P}(\cdot) \in \Delta(\mathcal{S}) : D_{\text{TV}}(\widetilde{P}(\cdot) || P(\cdot|s,a)) \le \rho \right\}.
$$

 $\rho \in [0, 1)$ is the level of robustness.

▶ Robust Bellman optimal equation:

$$
V_{h,P^*,\Phi}^*(s) = \max_{a \in \mathcal{A}} Q_{h,P^*,\Phi}^*(s,a), \quad Q_{h,P^*,\Phi}^*(s,a) = R_h(s,a) + \inf_{P_h \in \Phi(P_h^*)} \mathbb{E}_P^{\pi} \left[V_{h+1,P^*,\Phi}^* \right]
$$

Robust Markov Decision Processes

▶ Goal: using data collected from training Env. $P^* = \{P_h^*\}_{h=1}^H$, find a policy π^* that

$$
\pi^{\star} := \argsup_{\pi \in \Pi} V_{1, P^{\star}, \Phi}^{\pi}(s) := \argsup_{\pi \in \Pi} \inf_{\substack{P_h \in \Phi(P_h^{\star}) \\ 1 \le h \le H}} \mathbb{E}^{\pi}_P \left[\sum_{h=1}^H R_h(s_h, a_h) \middle| s_1 = s \right].
$$

 \blacktriangleright Robust set Φ : set of testing environment distributions

– This work: we focus on Total Variation (TV) distance robust set:

$$
\Phi(P) = \bigotimes_{(s,a)\in S \times \mathcal{A}} \mathcal{P}_{\rho}(s,a;P),
$$

$$
\mathcal{P}_{\rho}(s,a;P) := \left\{ \widetilde{P}(\cdot) \in \Delta(\mathcal{S}) : D_{\text{TV}}(\widetilde{P}(\cdot) || P(\cdot|s,a)) \le \rho \right\}.
$$

 $-\rho \in [0, 1)$ is the level of robustness.

▶ Robust Bellman optimal equation:

$$
V_{h,P^*,\Phi}^*(s) = \max_{a \in \mathcal{A}} Q_{h,P^*,\Phi}^*(s,a), \quad Q_{h,P^*,\Phi}^*(s,a) = R_h(s,a) + \inf_{P_h \in \Phi(P_h^*)} \mathbb{E}_P^{\pi} [V_{h+1,P^*,\Phi}^*].
$$

Robust Markov Decision Processes

▶ Goal: using data collected from training Env. $P^* = \{P_h^*\}_{h=1}^H$, find a policy π^* that

$$
\pi^\star:=\argsup_{\pi\in\Pi}V_{1,P^\star,\Phi}^{\pi}(s):=\argsup_{\pi\in\Pi}\inf_{\substack{P_h\in\Phi(P_h^\star)\\1\leq h\leq H}}\mathbb{E}_P^\pi\left[\sum_{h=1}^HR_h(s_h,a_h)\middle|s_1=s\right].
$$

 \blacktriangleright Robust set Φ : set of testing environment distributions

– This work: we focus on Total Variation (TV) distance robust set:

$$
\Phi(P) = \bigotimes_{(s,a)\in S \times \mathcal{A}} \mathcal{P}_{\rho}(s,a;P),
$$

$$
\mathcal{P}_{\rho}(s,a;P) := \left\{ \widetilde{P}(\cdot) \in \Delta(\mathcal{S}) : D_{\text{TV}}(\widetilde{P}(\cdot) || P(\cdot|s,a)) \le \rho \right\}.
$$

 $-\rho \in [0, 1)$ is the level of robustness.

▶ Robust Bellman optimal equation:

$$
V_{h,P^{\star},\Phi}^{\star}(s) = \max_{a \in \mathcal{A}} Q_{h,P^{\star},\Phi}^{\star}(s,a), \quad Q_{h,P^{\star},\Phi}^{\star}(s,a) = R_h(s,a) + \inf_{P_h \in \Phi(P_h^{\star})} \mathbb{E}_P^{\pi} \left[V_{h+1,P^{\star},\Phi}^{\star} \right].
$$

Recap: Learn the optimal robust policy π^* using data of training Env. P^*

What kind of data do we have?

Data Generation Mechanism

Interaction protocol:

- ▶ Interact with training Env. P^* for $K \in [N]$ episodes.
- ▶ In each episode $k \in [K]$, use policy π^k to collect data $\left\{(s_h^k,a_h^k,r_h^k,s_{h+1}^k)\right\}_{h=1}^H$.
- \blacktriangleright After episode k , use historical data to update policy to π^{k+1}

Metric:

▶ Online regret:

Regret_Φ(K) :=
$$
\sum_{k=1}^{K} V_{1,P^*,\Phi}^*(s_1) - V_{1,P^*,\Phi}^{\pi^k}(s_1)
$$
.

• Sample complexity: # episodes of interaction suffice to learn ε -optimal robust policy, i.e.

$$
V_{1,P^*,\Phi}^*(s_1) - V_{1,P^*,\Phi}^{\hat{\pi}}(s_1) \le \varepsilon \tag{1}
$$

Question:

"Can we design a provably sample-efficient robust RL algorithm using interactive data collection in the training environment?"

Data Generation Mechanism

Interaction protocol:

- ▶ Interact with training Env. P^* for $K \in [N]$ episodes.
- ▶ In each episode $k \in [K]$, use policy π^k to collect data $\left\{(s_h^k,a_h^k,r_h^k,s_{h+1}^k)\right\}_{h=1}^H$.
- \blacktriangleright After episode k , use historical data to update policy to π^{k+1}

Metric:

▶ Online regret:

$$
\text{Regret}_{\mathbf{\Phi}}(K) := \sum_{k=1}^{K} V_{1,P^{\star},\mathbf{\Phi}}^{\star}(s_1) - V_{1,P^{\star},\mathbf{\Phi}}^{\pi^k}(s_1).
$$

 \triangleright Sample complexity: # episodes of interaction suffice to learn ε -optimal robust policy, i.e.

$$
V_{1,P^{\star},\Phi}^{\star}(s_1) - V_{1,P^{\star},\Phi}^{\hat{\pi}}(s_1) \leq \varepsilon
$$
\n(1)

Question:

"Can we design a provably sample-efficient robust RL algorithm using interactive data collection in the training environment?"

Data Generation Mechanism

Interaction protocol:

- ▶ Interact with training Env. P^* for $K \in [N]$ episodes.
- ▶ In each episode $k \in [K]$, use policy π^k to collect data $\left\{(s_h^k,a_h^k,r_h^k,s_{h+1}^k)\right\}_{h=1}^H$.
- \blacktriangleright After episode k , use historical data to update policy to π^{k+1}

Metric:

▶ Online regret:

$$
\text{Regret}_{\boldsymbol{\Phi}}(K) := \sum_{k=1}^K V_{1,P^{\star},\boldsymbol{\Phi}}^{\star}(s_1) - V_{1,P^{\star},\boldsymbol{\Phi}}^{\pi^k}(s_1).
$$

 \triangleright Sample complexity: # episodes of interaction suffice to learn ε -optimal robust policy, i.e.

$$
V_{1,P^{\star},\Phi}^{\star}(s_1) - V_{1,P^{\star},\Phi}^{\hat{\pi}}(s_1) \leq \varepsilon
$$
\n(1)

Question:

"Can we design a provably sample-efficient robust RL algorithm using interactive data collection in the training environment?"

Outline

[Background and Problem Setup](#page-2-0)

[Hardness Result under Interactive Data Collection](#page-14-0)

[Vanishing Minimal Value Assumption and Algorithm Design](#page-17-0)

[Future Works](#page-26-0)

Hardness Result

- ▶ For RMDP with total variation (TV) robust set, robust RL with interactive data collection inevitably incurs a regret of $Regret(K) > \Omega(\rho \cdot HK)$, where $\rho =$ size of robust set.
- ▶ Hard example: a simple class of two RMDPs: $S = \{s_{\text{good}}, s_{\text{bad}}\}, \mathcal{A} = \{0, 1\}.$

- $-$ Solid lines: transitions of the nominal transition kernel P^* .
-
-
- \triangleright When starting from $s_1 = s_{\text{good}}$, the nominal transition kernel keeps the agent at s_{good} and no information at s_{bad} is revealed!

Hardness Result

- ▶ For RMDP with total variation (TV) robust set, robust RL with interactive data collection inevitably incurs a regret of $Regret(K) \ge \Omega(\rho \cdot HK)$, where $\rho =$ size of robust set.
- ▶ Hard example: a simple class of two RMDPs: $S = \{s_{\text{good}}, s_{\text{bad}}\}, A = \{0, 1\}.$

- Solid lines: transitions of the nominal transition kernel P^* .
- Dashed lines: transitions of the worst case transition in the robust set.
- Red solid line: the transition where the two RMDP instances differ in that different action leads to higher transition probability from s_{bad} to s_{good} .
- ▶ When starting from $s_1 = s_{\text{good}}$, the nominal transition kernel keeps the agent at s_{good} and no information at s_{bad} is revealed!

Outline

[Background and Problem Setup](#page-2-0)

[Hardness Result under Interactive Data Collection](#page-14-0)

[Vanishing Minimal Value Assumption and Algorithm Design](#page-17-0)

[Future Works](#page-26-0)

Combating Hard Instance: Our Assumption

- \triangleright We identify the obstacle as the curse of support shift: the disjointedness of the distributional support between training / testing environments.
	- A broader understanding: the states often appearing in testing Env. are extremely hard to arrive in the training Env. Conjecture: imply hardness for other ϕ -divergence robust set.
- ▶ To rule out such instances, we propose the Vanishing Minimal Value (VMV) assumption:

The optimal robust value is zero at a specific state, i.e.,

 $\min_{s \in \mathcal{S}} V_{1, P^*, \Phi}^*(s) = 0.$

▶ Rules out the above hard instances (An equivalent form of robust Bellman equation where no explicit support shift occurs)

▶ Example (fail state assumption): $\exists s_f \in S$, s.t. $R_h(s_f, \cdot) = 0$ and $P_h^*(s_f|s_f, \cdot) = 1$.

Combating Hard Instance: Our Assumption

- \triangleright We identify the obstacle as the curse of support shift: the disjointedness of the distributional support between training / testing environments.
	- A broader understanding: the states often appearing in testing Env. are extremely hard to arrive in the training Env. Conjecture: imply hardness for other ϕ -divergence robust set.
- ▶ To rule out such instances, we propose the Vanishing Minimal Value (VMV) assumption:

Assumption 1 (Vanishing Minimal Value).

The optimal robust value is zero at a specific state, i.e.,

 $\min_{s \in \mathcal{S}} V_{1, P^*, \mathbf{\Phi}}^*(s) = 0.$

- ▶ Rules out the above hard instances (An equivalent form of robust Bellman equation where no explicit support shift occurs)
- ▶ Example (fail state assumption): $\exists s_f \in S$, s.t. $R_h(s_f, \cdot) = 0$ and $P_h^{\star}(s_f|s_f, \cdot) = 1$.

Our algorithm: OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV).

In each episode $k \in [K]$, it has three stages:

- ▶ (Stage 1: Training env. model estimation) estimate training env. P^* as \widehat{P}
- \blacktriangleright (Stage 2: Optimistic robust planning) solve the optimal robust policy π^k for the estimated model \widehat{P} based on a sophisticated joint consideration of:
	-
	- Optimistic robust value estimation to encourage exploration
- Stage 3: Interactive data collection) use policy π^{k} to collect data.

Our algorithm: OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV).

In each episode $k \in [K]$, it has three stages:

- ▶ (Stage 1: Training env. model estimation) estimate training env. P^* as \widehat{P}
- \blacktriangleright (Stage 2: Optimistic robust planning) solve the optimal robust policy π^k for the estimated model \widehat{P} based on a sophisticated joint consideration of:
	-
	-
- Stage 3: Interactive data collection) use policy π^{k} to collect data.

Our algorithm: OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV).

In each episode $k \in [K]$, it has three stages:

- ▶ (Stage 1: Training env. model estimation) estimate training env. P^* as \widehat{P}
- \blacktriangleright (Stage 2: Optimistic robust planning) solve the optimal robust policy π^k for the estimated model \widehat{P} based on a sophisticated joint consideration of:
	- Robust optimal Bellman equation to ensure exploitation and distributional robustness
	- Optimistic robust value estimation to encourage exploration

Stage 3: Interactive data collection) use policy π^{k} to collect data.

Our algorithm: OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV).

In each episode $k \in [K]$, it has three stages:

- ▶ (Stage 1: Training env. model estimation) estimate training env. P^* as \widehat{P}
- \blacktriangleright (Stage 2: Optimistic robust planning) solve the optimal robust policy π^k for the estimated model \widehat{P} based on a sophisticated joint consideration of:
	- Robust optimal Bellman equation to ensure exploitation and distributional robustness
	- Optimistic robust value estimation to encourage exploration
- Stage 3: Interactive data collection) use policy π^{k} to collect data.

Theoretical Results

Theorem 1 (Online Regret of OPROVI-TV).

Under the VMV assumption, for any $\rho \in [0,1)$, OPROVI-TV has an online regret of

$$
\mathrm{Regret}(K) \leq \widetilde{\mathcal{O}}\bigg(\sqrt{\min\big\{H, \rho^{-1}\big\}\cdot H^2SAK}\,\bigg).
$$

As a corollary, $\overline{OPROVI-TV}$ is capable of finding an ε -optimal robust policy within

$$
\widetilde{\mathcal{O}}\left(\min\{H,\rho^{-1}\}\cdot\frac{H^2SA}{\varepsilon^2}\right)
$$

interactive samples. $\widetilde{\mathcal{O}}(\cdot)$ hides logarithmic factors.

- ▶ First result of this kind
- ▶ Matching the sample complexity lower bound of generative model case [\[Shi et al., 2023\]](#page-30-0)
- \triangleright Requires less sample as the robust set size ρ increases

Theoretical Results

Theorem 1 (Online Regret of OPROVI-TV).

Under the VMV assumption, for any $\rho \in [0,1)$, OPROVI-TV has an online regret of

$$
\mathrm{Regret}(K) \leq \widetilde{\mathcal{O}}\bigg(\sqrt{\min\big\{H, \rho^{-1}\big\}\cdot H^2SAK}\,\bigg).
$$

As a corollary, $\overline{OPROVI-TV}$ is capable of finding an ε -optimal robust policy within

$$
\widetilde{\mathcal{O}}\left(\min\{H,\rho^{-1}\}\cdot \frac{H^2SA}{\varepsilon^2}\right)
$$

interactive samples. $\widetilde{\mathcal{O}}(\cdot)$ hides logarithmic factors.

- ▶ First result of this kind
- ▶ Matching the sample complexity lower bound of generative model case [\[Shi et al., 2023\]](#page-30-0)
- \blacktriangleright Requires less sample as the robust set size ρ increases

Outline

[Background and Problem Setup](#page-2-0)

[Hardness Result under Interactive Data Collection](#page-14-0)

[Vanishing Minimal Value Assumption and Algorithm Design](#page-17-0)

[Future Works](#page-26-0)

\blacktriangleright Function approximations

- Existing works have preliminary results on linear function approximations
- General function approximations: identifying general learnability principle like Bellman rank, bilinear class, Bellman-Eluder dimension, generalized Eluder coefficient for standard online RL.

▶ Other types of robust set

- KL divergence? It is even unknown whether robust RL with interactive data collection is possible in this case.
- ▶ Robust Markov games

Provably sample-efficient algorithms exist for generative model/offline learning setup [\[Blanchet](#page-30-1) [et al., 2023\]](#page-30-1), but remain unknown for interactive data collection!

- \blacktriangleright Function approximations
	- Existing works have preliminary results on linear function approximations
	- General function approximations: identifying general learnability principle like Bellman rank, bilinear class, Bellman-Eluder dimension, generalized Eluder coefficient for standard online RL.
- ▶ Other types of robust set
	- KL divergence? It is even unknown whether robust RL with interactive data collection is possible in this case.
- ▶ Robust Markov games

Remark

Provably sample-efficient algorithms exist for generative model/offline learning setup [\[Blanchet](#page-30-1) [et al., 2023\]](#page-30-1), but remain unknown for interactive data collection!

Thanks for your attention!

References I

- J. Blanchet, M. Lu, T. Zhang, and H. Zhong. Double pessimism is provably efficient for distributionally robust offline reinforcement learning: Generic algorithm and robust partial coverage. Advances in Neural Information Processing Systems, 36, 2023.
- L. Shi, G. Li, Y. Wei, Y. Chen, M. Geist, and Y. Chi. The curious price of distributional robustness in reinforcement learning with a generative model. Advances in Neural Information Processing Systems, 36, 2023.