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RL and Sim-to-Real Gaps

▶ RL achieves tremenduous success in:

– Robotics

– Healthcare

– Recommendation systems

– Autonomous driving

– Training large language models

▶ Challenge: sim-to-real gap

– Training env. ̸= Testing env.

– Cause degeneration of performance

Basics of RL

▶ MDP: M = (S,A, H, {Ph}Hh=1, {Rh}Hh=1).

▶ S: state space, A: action space.

▶ R : S ×A 7→ [0, 1]: reward function

▶ H: Horizon length.

▶ P ⋆
h : transition distribution of training Env.

▶ P ′
h: transition distribution of testing Env.
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Robust Markov Decision Processes

▶ Goal: using data collected from training Env. P ⋆ = {P ⋆
h}

H
h=1, find a policy π⋆ that

π⋆ := arg sup
π∈Π

V π
1,P⋆,Φ(s) := arg sup

π∈Π
inf

Ph∈Φ(P⋆
h )

1≤h≤H

Eπ
P

[
H∑

h=1

Rh(sh, ah)

∣∣∣∣∣s1 = s

]
.

▶ Robust set Φ: set of testing environment distributions

– This work: we focus on Total Variation (TV) distance robust set:

Φ(P ) =
⊗

(s,a)∈S×A

Pρ(s, a;P ),

Pρ(s, a;P ) :=
{
P̃ (·) ∈ ∆(S) : DTV

(
P̃ (·)

∥∥P (·|s, a)
)
≤ ρ

}
.

– ρ ∈ [0, 1) is the level of robustness.

▶ Robust Bellman optimal equation:

V ⋆
h,P⋆,Φ(s) = max

a∈A
Q⋆

h,P⋆,Φ(s, a), Q⋆
h,P⋆,Φ(s, a) = Rh(s, a) + inf

Ph∈Φ(P⋆
h
)
Eπ
P

[
V ⋆
h+1,P⋆,Φ

]
.
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Recap: Learn the optimal robust policy π⋆ using data of training Env. P ⋆

What kind of data do we have?

6 / 18



Mechanism Explanation

Prior Work
Generative Model can query any (s, a, h) to obtain s′ ∼ P ⋆

h (·|s, a)

Offline Learning
pre-collected data{

(sih, a
i
h, s

i
h+1)

}N

i=1
∼ µh(s, a)⊗ P ⋆

h (s
′|s, a)

This work
Interactive data

collection
interact with P ⋆ by algorithm-dependent policy!
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Data Generation Mechanism

Interaction protocol:

▶ Interact with training Env. P ⋆ for K ∈ [N ] episodes.

▶ In each episode k ∈ [K], use policy πk to collect data
{
(skh, a

k
h, r

k
h, s

k
h+1)

}H

h=1
.

▶ After episode k, use historical data to update policy to πk+1

Metric:

▶ Online regret:

RegretΦ(K) :=

K∑
k=1

V ⋆
1,P⋆,Φ(s1)− V πk

1,P⋆,Φ(s1).

▶ Sample complexity: # episodes of interaction suffice to learn ε-optimal robust policy, i.e.

V ⋆
1,P⋆,Φ(s1)− V π̂

1,P⋆,Φ(s1) ≤ ε (1)

Question:

“Can we design a provably sample-efficient robust RL algorithm using

interactive data collection in the training environment?”
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Hardness Result

▶ For RMDP with total variation (TV) robust set, robust RL with interactive data collection

inevitably incurs a regret of Regret(K) ≥ Ω(ρ ·HK), where ρ = size of robust set.

▶ Hard example: a simple class of two RMDPs: S = {sgood, sbad}, A = {0, 1}.

sgood sgood sgood

sbad sbad

R1 = 1 R2 = 1 R3 = 1

R2 = 0 R3 = 0

– Solid lines: transitions of the nominal transition kernel P⋆.

– Dashed lines: transitions of the worst case transition in the robust set.

– Red solid line: the transition where the two RMDP instances differ in that different action leads to

higher transition probability from sbad to sgood.

▶ When starting from s1 = sgood, the nominal transition kernel keeps the agent at sgood and

no information at sbad is revealed!

10 / 18



Hardness Result

▶ For RMDP with total variation (TV) robust set, robust RL with interactive data collection

inevitably incurs a regret of Regret(K) ≥ Ω(ρ ·HK), where ρ = size of robust set.

▶ Hard example: a simple class of two RMDPs: S = {sgood, sbad}, A = {0, 1}.

sgood sgood sgood

sbad sbad

R1 = 1 R2 = 1 R3 = 1

R2 = 0 R3 = 0

– Solid lines: transitions of the nominal transition kernel P⋆.

– Dashed lines: transitions of the worst case transition in the robust set.

– Red solid line: the transition where the two RMDP instances differ in that different action leads to

higher transition probability from sbad to sgood.

▶ When starting from s1 = sgood, the nominal transition kernel keeps the agent at sgood and

no information at sbad is revealed!

10 / 18



Outline

Background and Problem Setup

Hardness Result under Interactive Data Collection

Vanishing Minimal Value Assumption and Algorithm Design

Future Works

11 / 18



Combating Hard Instance: Our Assumption

▶ We identify the obstacle as the curse of support shift: the disjointedness of the distributional

support between training / testing environments.

– A broader understanding: the states often appearing in testing Env. are extremely hard to arrive in

the training Env. Conjecture: imply hardness for other ϕ-divergence robust set.

▶ To rule out such instances, we propose the Vanishing Minimal Value (VMV) assumption:

Assumption 1 (Vanishing Minimal Value).

The optimal robust value is zero at a specific state, i.e.,

min
s∈S

V ⋆
1,P⋆,Φ(s) = 0.

▶ Rules out the above hard instances (An equivalent form of robust Bellman equation where

no explicit support shift occurs)

▶ Example (fail state assumption): ∃sf ∈ S, s.t. Rh(sf , ·) = 0 and P ⋆
h (sf |sf , ·) = 1.
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Algorithm Design

Our algorithm: OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV).

In each episode k ∈ [K], it has three stages:

▶ (Stage 1: Training env. model estimation) estimate training env. P ⋆ as P̂

▶ (Stage 2: Optimistic robust planning) solve the optimal robust policy πk for the estimated

model P̂ based on a sophisticated joint consideration of:

– Robust optimal Bellman equation to ensure exploitation and distributional robustness

– Optimistic robust value estimation to encourage exploration

▶ (Stage 3: Interactive data collection) use policy πk to collect data.
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Theoretical Results

Theorem 1 (Online Regret of OPROVI-TV).

Under the VMV assumption, for any ρ ∈ [0, 1), OPROVI-TV has an online regret of

Regret(K) ≤ Õ
(√

min
{
H, ρ−1

}
·H2SAK

)
.

As a corollary, OPROVI-TV is capable of finding an ε-optimal robust policy within

Õ
(
min{H, ρ−1} ·

H2SA

ε2

)

interactive samples. Õ(·) hides logarithmic factors.

▶ First result of this kind

▶ Matching the sample complexity lower bound of generative model case [Shi et al., 2023]

▶ Requires less sample as the robust set size ρ increases
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(√

min
{
H, ρ−1

}
·H2SAK

)
.

As a corollary, OPROVI-TV is capable of finding an ε-optimal robust policy within

Õ
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▶ Function approximations

– Existing works have preliminary results on linear function approximations

– General function approximations: identifying general learnability principle like Bellman rank, bilinear

class, Bellman-Eluder dimension, generalized Eluder coefficient for standard online RL.

▶ Other types of robust set

– KL divergence? It is even unknown whether robust RL with interactive data collection is possible in

this case.

▶ Robust Markov games

Remark

Provably sample-efficient algorithms exist for generative model/offline learning setup [Blanchet

et al., 2023], but remain unknown for interactive data collection!
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Thanks for your attention!
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