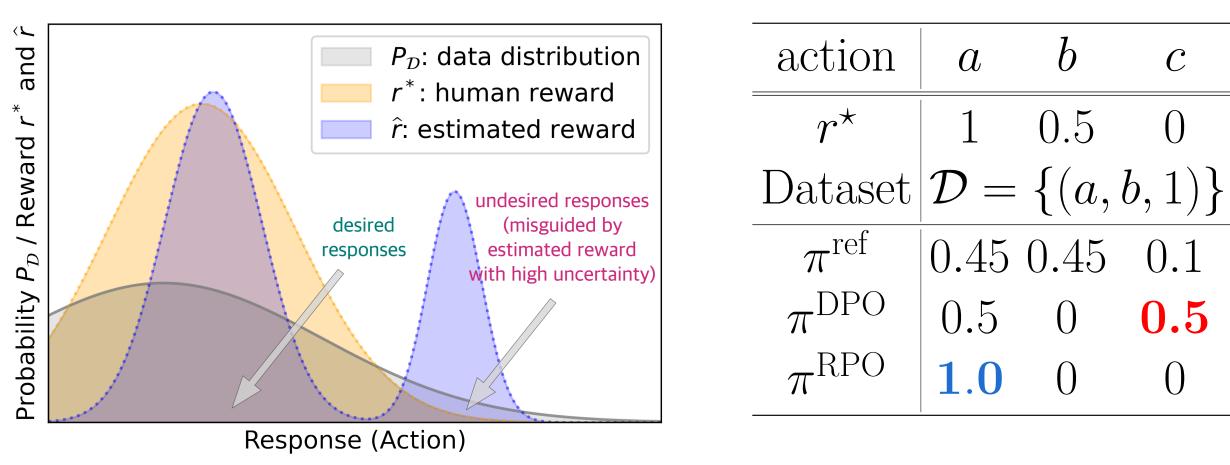
Background on RLHF

• Aligning generative models with human preference via RLHF typically suffers from *overoptimization*, where an imperfectly learned reward model can misguide the generative model to output undesired responses.



Question: How to *mitigate reward overoptimization* in RLHF in a principled and efficient manner for better alignment?

Our Contributions

- **1** A theoretical algorithm under general function approximation.
- **2** An equivalent and easy-to-implement practical objective: <u>Regularized</u> <u>Preference</u> <u>Optimization</u> (**RPO**).
- **3**Empirical evaluations on the LLM Alignment Tasks.

Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer

Zhihan Liu¹

Hongyi Guo¹

Miao Lu² Yingxiang Yang³

¹Northwestern University ²Stanford University ³ByteDance Inc.

Algorithm and Theory

 \mathcal{C} 0.50 $0.45 \ 0.45 \ 0.1$ $\mathbf{0.5}$ 0 0

Theoretical algorithm: Maximin objective.

- Output the policy maximizing an adversarially chosen reward model that minimizes the sum of: (a) the MLE loss for estimating the underlying reward; and (b) a reward expected value term as a penalty that prevents spuriously high reward estimation caused by data uncertainty and insufficient coverage.
- We prove the finite-sample suboptimality gap of (Maximin Objective) as $\mathcal{O}(C_{\text{coverage}}^2 \sqrt{\mathcal{N}_{\mathcal{R}}}/N)$ when competing with any LLM in terms of the underlying human reward. (N = # of preference data)

Practical algorithm: Minimax objective (RPO).

- **1** Under mild assumptions: (Maximin Obj.) \Leftrightarrow (Minimax Obj.)
- 2 With reward-policy duality reparametrization, the minimax objective takes a quite simple form: Imitation (SFT) Loss +Preference Optimization Loss.
- **3** We select the baseline policy π^{base} as the chosen policy of the preference dataset (does not induce extra computation overhead).

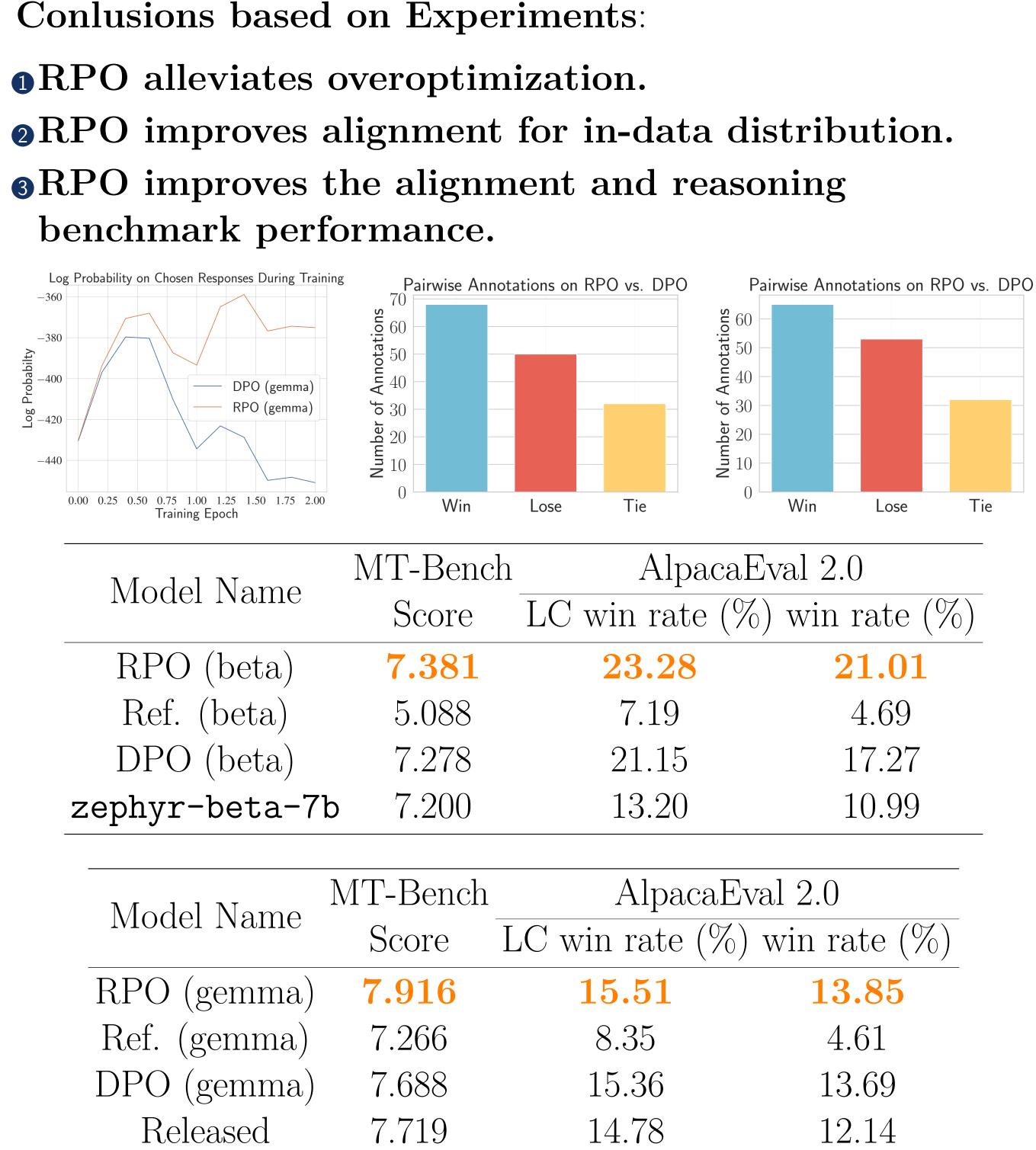
Model Name	GSM8K	ARC		MBPP (Pass @1)	
	(%)	Easy $(\%)$	Challenge $(\%)$	Normal $(\%)$	Plus (%)
RPO	49.9	79.1	49.8	54.2	46.3
DPO	45.3	75.7	50.0	54.2	43.9
Ref.	45.4	75.0	45.8	50.3	44.2
Released	47.3	77.6	48.6	54.5	44.7

Detailed Algorithm Design

$$\hat{\pi} \in \underset{\pi \in \Pi}{\operatorname{argmax}} \min_{r \in \mathcal{R}} \begin{cases} \eta \cdot \mathbb{E}_{x \sim d_0, a^1 \sim \pi(\cdot | x), \left[r(x, a^1) - r(x, a^0) - a^0 \sim \pi^{\operatorname{base}}(\cdot | x) \right] \\ \min_{\theta \in \Theta} \begin{cases} \mathcal{L}_{\operatorname{RPO}}(\theta) \coloneqq \eta \beta \cdot \mathbb{E}_{x \sim d_0, a^0 \sim \pi^{\operatorname{base}}(\cdot | x)} \left[-\log(\pi_{\theta}(a^0 - 1)) \right] \\ \operatorname{Imitation}(\operatorname{SFT}) \end{cases}$$

Shenao Zhang¹ Jose Blanchet²

Boyi Liu³ Zhaoran Wang¹



$-\beta \cdot \mathrm{KL}(\pi(\cdot|x)\|\pi^{\mathrm{ref}}(\cdot|x))\right] + \mathcal{L}_{\mathcal{D}}(r) \left\}.$

Preference opt. loss

Experiments

(Maximin Objective)

(Minimax Objective / RPO)