
Provably Mitigating Overoptimization in RLHF:
Your SFT Loss is Implicitly an Adversarial Regularizer

Zhihan Liu1 Miao Lu2 Shenao Zhang1 Boyi Liu3

Hongyi Guo1 Yingxiang Yang3 Jose Blanchet2 Zhaoran Wang1

1Northwestern University 2Stanford University 3ByteDance Inc.

Background on RLHF

1 Aligning generative models with human preference via RLHF
typically suffers from overoptimization, where an imperfectly
learned reward model can misguide the generative model to output
undesired responses.

desired
responses

undesired responses
(misguided by
estimated reward
with high uncertainty)

action a b c

r⋆ 1 0.5 0
Dataset D = {(a, b, 1)}

πref 0.45 0.45 0.1
πDPO 0.5 0 0.5
πRPO 1.0 0 0

2 Question: How to mitigate reward overoptimization in RLHF
in a principled and efficient manner for better alignment?

Our Contributions

1 A theoretical algorithm under general function
approximation.

2 An equivalent and easy-to-implement practical
objective: Regularized Preference Optimization
(RPO).

3 Empirical evaluations on the LLM Alignment Tasks.

Algorithm and Theory

Theoretical algorithm: Maximin objective.
1 Output the policy maximizing an adversarially chosen reward
model that minimizes the sum of: (a) the MLE loss for estimating
the underlying reward; and (b) a reward expected value term as a
penalty that prevents spuriously high reward estimation caused by
data uncertainty and insufficient coverage.

2 We prove the finite-sample suboptimality gap of (Maximin
Objective) as Õ(C2

coverage
√

NR/N) when competing with any LLM
in terms of the underlying human reward.
(N = # of preference data)

Practical algorithm: Minimax objective (RPO).
1 Under mild assumptions: (Maximin Obj.) ⇔ (Minimax Obj.)
2 With reward-policy duality reparametrization, the minimax
objective takes a quite simple form: Imitation (SFT) Loss +
Preference Optimization Loss!

3 We select the baseline policy πbase as the chosen policy of the
preference dataset (does not induce extra computation overhead).

Model Name GSM8K ARC MBPP (Pass @1)
(%) Easy (%) Challenge (%) Normal (%) Plus (%)

RPO 49.9 79.1 49.8 54.2 46.3
DPO 45.3 75.7 50.0 54.2 43.9
Ref. 45.4 75.0 45.8 50.3 44.2

Released 47.3 77.6 48.6 54.5 44.7

Experiments

Conlusions based on Experiments:
1 RPO alleviates overoptimization.
2 RPO improves alignment for in-data distribution.
3 RPO improves the alignment and reasoning
benchmark performance.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Epoch

−440

−420

−400

−380

−360

L
og

P
ro

ba
bi

lt
y

Log Probability on Chosen Responses During Training

DPO (gemma)

RPO (gemma)

Win Lose Tie
0

10

20

30

40

50

60

70

N
um

b
er

of
A

nn
ot

at
io

ns

Pairwise Annotations on RPO vs. DPO

Win Lose Tie
0

10

20

30

40

50

60

N
um

b
er

of
A

nn
ot

at
io

ns

Pairwise Annotations on RPO vs. DPO

Model Name MT-Bench AlpacaEval 2.0
Score LC win rate (%) win rate (%)

RPO (beta) 7.381 23.28 21.01
Ref. (beta) 5.088 7.19 4.69
DPO (beta) 7.278 21.15 17.27

zephyr-beta-7b 7.200 13.20 10.99

Model Name MT-Bench AlpacaEval 2.0
Score LC win rate (%) win rate (%)

RPO (gemma) 7.916 15.51 13.85
Ref. (gemma) 7.266 8.35 4.61
DPO (gemma) 7.688 15.36 13.69

Released 7.719 14.78 12.14

Detailed Algorithm Design

π̂ ∈ argmax
π∈Π

min
r∈R

η · Ex∼d0,a
1∼π(·|x),

a0∼πbase(·|x)

[
r(x, a1) − r(x, a0) − β · KL

(
π(·|x)∥πref(·|x)

)]
+ LD(r)

 . (Maximin Objective)

min
θ∈Θ

LRPO(θ) := ηβ · Ex∼d0,a
0∼πbase(·|x)

[
− log(πθ(a0|x))

]
︸ ︷︷ ︸

Imitation (SFT) loss

+ LD

β · log
 πθ(·|·)

πref(·|·)


︸ ︷︷ ︸

Preference opt. loss

. (Minimax Objective / RPO)

